русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Контекст процесса


Дата добавления: 2014-11-27; просмотров: 801; Нарушение авторских прав


Каждому процессу соответствует контекст, в котором он выполняется. Этот контекст включает пользовательский контекст (т. е. содержимое виртуального адресного пространства, сегментов программного кода, данных, стека, разделяемых сегментов и сегментов файлов, отображаемых в виртуальную память), содержимое аппаратных регистров — регистровый контекст (регистр счетчика команд, регистр состояния процессора, регистр указателя стека и регистры общего назначения), а также структуры данных ядра (контекст системного уровня), связанные с этим процессом. Контекст процесса системного уровня в ОС UNIX состоит из «статической» и «динамических» частей. Для каждого процесса имеется одна статическая часть контекста системного уровня и переменное число динамических частей.

Статическая часть контекста процесса системного уровня включает следующее:

Идентификатор процесса (PID)

Уникальный номер, идентифицирующий процесс. По сути, это номер строки в таблице процессов — специальной внутренней структуре ядра операционной системы, хранящей информацию о процессах.

В любой момент времени ни у каких двух процессов номера не могут совпадать, однако после завершения процесса его номер освобождается и может быть в дальнейшем использован для идентификации любого вновь запущенного процесса.

Идентификатор родительского процесса (PPID)

В операционнной системе UNIX процессы выстраиваются в иерархию — новый процесс может быть создан только одним из уже существующих процессов, который выступает для него родительским.

Очевидно, что в такой схеме должен присутствовать один процесс с особым статусом: он должен быть порожден ядром операционной системы и будет являться родительским для всех остальных процессов в системе. В UNIX такой процесс имеет собственное имя — init. Подробнее об этом процессе сказано в разделе «Процесс init».



Состояние процесса

Каждый процесс в любой момент времени находится в одном из нескольких определенных состояний: инициализация, исполнение, приостановка, ожидание ввода-вывода, завершение и т. п. (см. Рисунок 1.39, «Состояния процесса в UNIX»).

Рисунок 1.39. Состояния процесса в UNIX

 

Большинство этих состояний совпадает с классическим набором состояний процессов в многозадачных операционных системах. Для операционной системы UNIX характерно особое состояние процесса — зомби. Процесс получает это состояние, если он завершился раньше, чем этого ожидал его родительский процесс. В UNIX перевод процессов в состояние зомби служит для корректного завершения группы процессов, освобождения ресурсов и т. п.

Идентификаторы пользователя

Идентификатор пользователя и группы, от имени которых исполняется процесс, используются операционной системой для определения границ доступа для процесса. Подробнее о правах доступа будет сказано в лекции «Введение в безопасность UNIX».

Приоритет процесса

Число, используемое при планировании (см. «Планирование процессов») исполнения процесса в операционной системе. Традиционное решение операционной системы UNIX состоит в использовании динамически изменяющихся приоритетов. При образовании каждого процесса ему приписывается некоторый устанавливаемый системой статический приоритет, который в дальнейшем может быть изменен с помощью системного вызова nice. Реальным критерием планирования выступает динамический приоритет, статический приоритет составляет основу начального значения динамического приоритета процесса. Все процессы с динамическим приоритетом не ниже порогового участвуют в конкуренции за процессор.

Таблица дескрипторов открытых файлов

Список структур ядра, описывающий все файлы, открытые этим процессом для ввода-вывода.

Другая информация, связанная с процессом

Динамическая часть контекста процесса — это один или несколько стеков, которые используются процессом при выполнении в режиме пользователя и в режиме ядра (в процессе прерываний и системных вызовов).

Планирование процессов

Презентация 3-04: планирование процессов

Основной проблемой организации многопользовательского (правильнее сказать, мультипрограммного) режима в любой операционной системе является организация планирования «параллельного» выполнения нескольких процессов. Операционная система должна обладать четкими критериями для определения того, какому готовому к выполнению процессу и когда предоставить ресурс процессора.

Наиболее распространенным алгоритмом планирования в системах разделения времени является кольцевой режим (Round Robin). Основной смысл алгоритма состоит в том, что время процессора делится на кванты фиксированного размера, а процессы, готовые к выполнению, выстраиваются в кольцевую очередь (см. Рисунок 1.40, «Схема планирования с кольцевой очередью»). У этой очереди имеются два указателя — начала и конца. Когда процесс, выполняющийся на процессоре, исчерпывает свой квант процессорного времени, он снимается с процессора, ставится в конец очереди, а ресурсы процессора отдаются процессу, находящемуся в начале очереди. Если выполняющийся на процессоре процесс откладывается (например, по причине обмена с некоторым внешним устройством) до того, как он исчерпает свой квант, то после повторной активизации он становится в конец очереди (не смог доработать — не вина системы). Это прекрасная схема разделения времени в случае, когда все процессы одновременно помещаются в оперативной памяти.

Рисунок 1.40. Схема планирования с кольцевой очередью

 

Однако операционная система UNIX всегда была рассчитана на то, чтобы обслуживать больше процессов, чем можно одновременно разместить в основной памяти. Другими словами, часть процессов, потенциально готовых выполняться, размещалась во внешней памяти (куда образ памяти процесса попадал в результате откачки). Для оптимизации работы в этом случае требуется несколько более гибкая схема планирования при разделении ресурсов процессора. В результате было введено понятие приоритета (см. Рисунок 1.41, «Схема планирования с кольцевой очередью и приоритетами»). В операционной системе UNIX на основании значения приоритета процесса определяется, во-первых, возможность процесса пребывать в основной памяти и на равных конкурировать за процессор. Во-вторых, от значения приоритета процесса зависит размер временного кванта, который предоставляется процессу для работы на процессоре при достижении своей очереди. В-третьих, значение приоритета влияет на место процесса в общей очереди процессов.

Рисунок 1.41. Схема планирования с кольцевой очередью и приоритетами

 



<== предыдущая лекция | следующая лекция ==>
Управление памятью | Создание новых процессов


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.