Аналого-цифровой преобразователь (АЦП), англ. Analog-to-digital converter (ADC), — устройство, преобразующее входной аналоговый сигнал в дискретный код (цифровой сигнал). Обратное преобразование осуществляется при помощи цифро-аналогового преобразователя (ЦАП), англ. – Digital-to- analog-converter (DAC).
Преобразования аналоговых величин заключается в представлении некой непрерывной функции (например, напряжения) от времени в последовательность чисел, отнесенных к неким фиксированным моментам времени. Для преобразования аналогового (непрерывного) сигнала в цифровой необходимо выполнить три операции: дискретизация, квантование и кодирование.
4.1. Параллельные АЦП
Чаще всего в качестве пороговых устройств параллельного АЦП используются интегральные компараторы. Схема типичного АЦП параллельного типа приведена на рисунке 4.1.
Рисунок 4.1
Число компараторов DA выбирается с учетом разрядности кода. Например, для двух разрядов понадобится три компаратора, для трех - семь, для 4-х - 15. Опорные напряжения задаются с помощью резистивного делителя. Входное напряжение Uвх подается вход компараторов и сравнивается с набором опорных напряжений, снимаемых с делителя. На выходе компаратора, где входное напряжение больше соответствующего опорного, будет лог. 1, на остальных - лог. 0. Естественно, при входном напряжении равном 0 на выходах компараторов будут нули. При максимальном входном напряжении на выходах компараторов будут лог. 1. Шифратор предназначен для преобразования полученной группы нулей и единиц в двоичный код.
Параллельный АЦП является самым быстродействующим из всех, поскольку компараторы работают одновременно. Но есть весьма существенный недостаток. Как было сказано выше, разрядность такого АЦП определяется числом компараторов. При малой разрядности это еще не является существенным недостатком, но при увеличении разрядности схема становится очень громоздкой.
4.2. Последовательные АЦП
Последовательные АЦП бывают последовательного счета и последовательного приближения. Типичная схема АЦП последовательного счета приведена на рисунке 4.2.
Рисунок 4.2
На схеме буквами и символами обозначены следующие элементы: К - компаратор, & - схема "И", ГТИ - генератор тактовых импульсов, СТ - счетчик, #/A - ЦАП. На один вход компаратора подается входное напряжение, на второй - напряжение с выхода ЦАП. В начале работы счетчик устанавливается в нулевое состояние, напряжение на выходе ЦАП при этом равно нулю, а на выходе компаратора устанавливается лог. 1. При подаче импульса разрешения "Строб" счетчик начинает считать импульсы от генератора тактовых импульсов, проходящих через открытый элемент "И". Напряжение на выходе ЦАП при этом линейно нарастает, пока не станет равным входному. При этом компаратор переключается в состояние лог. 0 и счет импульсов прекращается. Число, установившееся на выходе счетчика и есть пропорциональный входному напряжению цифровой код. Выходной код остается неизменным пока длится импульс "Строб", после окончания которого счетчик устанавливается в нулевое состояние и процесс преобразования повторяется.
Такие АЦП имеют низкое быстродействие. Достоинством является сравнительная простота построения.
Более быстродействующим являются АЦП последовательного приближения, называемый также АЦП с поразрядным уравновешиванием. АЦП последовательного приближения показан на рисунке 4.3
Рисунок 4.3
В основе работы таких преобразователей лежит принцип дихотомии - последовательного сравнения измеряемой величины с ½, ¼, ⅛ и т. д. от возможного ее максимального значения.
В таком АЦП используется специальный регистр - регистр последовательных приближений. При подаче импульса "Пуск" на выходе старшего разряда регистра появляется лог. 1, а на выходе ЦАП напряжение U1. Если это напряжение меньше входного, то в следующем по счету разряде регистра записывается еще лог. 1. Если же входное напряжение меньше, то лог. 1 в старшем разряде отменяется. Таким образом, методом проб перебираются все разряды - от старшего до младшего. На всю операцию преобразования требуется импульсов ГТИ всего в два раза больше количества разрядов. То есть АЦП последовательных приближений обладает более высоким быстродействием по сравнению с АЦП последовательного счета.
4.3. Последовательно-параллельные АЦП
Последовательно-параллельные АЦП представляют собой компромиссное техническое решение между параллельными и последовательными АЦП, в котором реализуется желание получить максимально возможное быстродействие при минимальных затратах и сложности.
На рисунке 4.4 приводится в качестве примера двухступенчатый АЦП. В многоступенчатых преобразователях процесс преобразования разделен в пространстве.
Рисунок 4.4
АЦП1 осуществляет "грубое" преобразование входного сигнала в старшие разряды. Сигналы с выхода первого АЦП поступают на выходной регистр и одновременно на вход быстродействующего ЦАП. Кружочек с плюсиком - это сумматор (суммирующий или вычитающий). Цифровой код преобразуется ЦАП в напряжение, которое вычитается из входного в сумматоре. Разность напряжений преобразуется с помощью АЦП2 в коды младших разрядов. В таких схемах ЦАП чаще всего выполняется по схеме суммирования токов с помощью дифференциальных переключателей, но могут быть построены по схеме суммирования напряжений.
Требования к точности АЦП1 выше, нежели ко второму. Оба АЦП параллельного типа. Допустим, и тот, и другой 4-хразрядные, в каждом используется по 16 компараторов. В итоге получается 8-ми разрядный АЦП всего на 32 компараторах, тогда как при построении по параллельной схеме понадобилось бы 28 - 1 = 255 шт. Быстродействие примерно раза в два хуже.
4.4 Цифро-аналоговые преобразователи
Цифро-аналоговые преобразователи предназначены для преобразования цифровых кодов в аналоговые величины, например, напряжение, ток, сопротивление и т. п. Принцип преобразования заключается в суммировании всех разрядных токов (или напряжений), взвешенных по двоичному закону и пропорциональных значению опорного напряжения. Другими словами, преобразование заключается в суммировании токов или напряжений, пропорциональных весам двоичных разрядов, причем суммируются только токи тех разрядов, значения которых равны лог. 1. В двоичном коде вес от разряда к разряду изменяется вдвое. Наиболее распространены две схемы суммирования токов - параллельная и последовательная. На рисунке 4.5 приведена схема параллельного суммирования токов.
Ключи S переключаются при уровне лог. 1, подключая резисторы к источнику опорного напряжения. Через резистор протекает соответствующий весу разряда ток. Сопротивление резисторов прогрессивно изменяется в два раза от разряда к разряду.
Рисунок 4.5
При высокой разрядности сопротивления резисторов должны быть согласованы с высокой точностью. Особо жесткие требования предъявляются к резисторам старших разрядов, поскольку разброс тока в них не должен превышать тока младшего разряда. Вообще же, разброс сопротивления в n-м разряде должен быть меньше, чем:
Δ R / R = 2-n
Отсюда следует, что разброс сопротивления, к примеру, в третьем разряде не должен превышать 12,5%, в 10-м разряде - уже 0,098%.
Такая схема обладает целой рядом недостатков, хотя она проста. К примеру, при различных входных кодовых состояниях потребляемый от источника опорного напряжения (ИОН) ток будет также различным, что несомненно повлияет на величину выходного напряжения ИОН. Кроме того, сопротивления весовых резисторов могут отличаться в тысячи раз, а это затрудняет реализацию таких резисторов в полупроводниковых ИС. Помимо этого, сопротивления резисторов старших разрядов могут быть соизмеримы с сопротивлением замкнутого ключа, а это приведет к погрешностям преобразования. И еще, в разомкнутом состоянии к ключам прикладывается довольно высокое напряжение, а это затрудняет их построение.
Для устранения указанных выше недостатков используется структура, которая приведена на рисунке 4.6.
В такой схеме задание весовых коэффициентов осуществляется с помощью резистивной матрицы постоянного сопротивления. Основным элементом матрицы постоянного сопротивления, является делитель R-2R, показанный на рисунок 4.7. При этом должно выполняться условие: если делитель нагружен на сопротивление нагрузки, то его входное сопротивление также должно быть равно сопротивлению нагрузки.
Рисунок 4.6
Рисунок 4.7
Поскольку ключи S соединяют нижние выводы резисторов с общей шиной питания, источник опорного напряжения работает на постоянную нагрузку, следовательно, его значение стабильно и не изменяется при любом входном коде ЦАП, в отличие от предыдущей схемы. Кроме того, резисторы 2R соединяются с общей шиной через низкое сопротивление замкнутых ключей S, напряжения на ключах небольшие (в пределах нескольких милливольт), что значительно упрощает построение ключей и схем управления ими, а также использовать опорное напряжение в широком диапазоне. В качестве ключей используются МОП-транзисторы. Поскольку выходной ток в таком преобразователе изменяется линейно, то имеется возможность умножения аналогового сигнала на цифровой код, если вместо опорного напряжения использовать аналоговый сигнал. Такие ЦАП называются перемножающими (MDAC).
В качестве переключателей тока могут также использоваться биполярные дифференциальные каскады.
15. Т.М. Жолшараева. Схемотехника 1. Конспект лекций для студентов всех форм обучения специальности 050704 –Вычислительная техника и программное обеспечение. – Алматы: АИЭС, 2008. – 50 с.