русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Несинхронизируемые ПНЧ


Дата добавления: 2014-11-27; просмотров: 1378; Нарушение авторских прав


Отечественная промышленность выпускает несинхронизируемый ПНЧ типа КР1108ПП1 и аналогичный КР1143ПП1. Их зарубежные аналоги, совместимые по выводам — ADVFC32 фирмы Analog Devices, VFC32 и VFC320 фирмы Burr-Brown. Упрощенная функциональная схема такого ПНЧ показана на рис. 1. ПНЧ включает в себя усилитель А1, компаратор А2, одновибратор, источник стабильного тока I0, аналоговый ключ S и выходной транзистор. Для построения ПНЧ микросхему следует дополнить двумя конденсаторами С1, С2 и двумя резисторами R1, R2. Элементы R1, С1, А1 образуют интегратор. Конденсатор С2 задает длительность импульса одновибратора t = kC2, где k определяется характеристиками микросхемы (в VFC32 I0 = 1 мА, k = 75 кОм). Импульсы тока I0уравновешивают ток, вызываемый входным напряжением VIN

TVIN / R1 = kC2I0.

Откуда f = 1 / T = VIN / (kI0R1C2). (1)

Рис. 1. Типовая схема включения и диаграммы сигналов ПНЧ VFC32

Из (1) следует, что стабильность характеристики преобразования ПНЧ зависит от стабильности внешних элементов R1, C2 и внутренних параметров k, I0микросхемы. Кроме того, для обеспечения высокой линейности преобразования конденсатор С1 необходимо выбирать с малой утечкой и малым коэффициентом диэлектрической абсорбции (полипропиленовый, полистирольный, поликарбонатный).

Диапазон входных токов задается равным 0,25I0, а резистор R1 устанавливает входной диапазон напряжения от 0 до VINmax = 0,25I0R1.

ПНЧ содержит выходной каскад с открытым коллектором. Напряжение питания этого каскада выбирается из условия согласования с последующими цифровыми цепями. Допустимый ток его достаточен для управления светодиодом оптрона или обмоткой импульсного трансформатора в схемах гальванической изоляции аналоговых входов.

С помощью рассматриваемого ПНЧ можно преобразовывать отрицательные напряжения, но для этого нужно изменить подключение входного сигнала. Иными словами, прямое преобразование биполярных сигналов не предусмотрено.



При расширении диапазона изменения выходной частоты все заметнее проявляется конечное время переключения аналоговых ключей, что выражается в интегральной нелинейности преобразования. Ее минимальная погрешность (0,01 %) достигается в узком диапазоне частот 0–10 кГц. В расширенном диапазоне выходных частот (0–500 кГц) погрешность нелинейности увеличивается до 0,2 %.

Еще один популярный ПНЧ — AD654 фирмы Analog Devices (рис. 2) — имеет следующие отличительные особенности: питание от одного источника напряжения 5 В, ток потребления 2 мА, высокое входное сопротивление (250 МОм), малые смещение (1 мВ) и дрейф нуля (4 мкВ/°С), небольшие начальное отклонение (±10 %) и температурный дрейф коэффициента преобразования (50*10-6/°С). Микросхема требует всего два внешних элемента RT и CT для задания характеристики преобразования:

f = VIN / (10 RT CT).

Рис. 2. Схема включения AD654 с изолированным выходом

Максимальная частота может быть установлена до 500 кГц при динамическом диапазоне 80 дБ (диапазон входного тока — от 100 нА до 1 мА). С помощью RT диапазон входных напряжений можно устанавливать от 10 мкВ – 100 мВ до 3 мВ – 30 В.

Входной усилитель позволяет работать напрямую с малыми сигналами термопары или тензодатчика. Выходной каскад AD654 согласуется с КМОП- и ТТЛ-схемами, управляет светодиодом оптрона, работает на длинный кабель.



<== предыдущая лекция | следующая лекция ==>
Преобразователи напряжение-частота. | Синхронизируемые ПНЧ


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.008 сек.