русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

СТРУКТУРНЫЙ СИНТЕЗ АВТОМАТА МИЛИ


Дата добавления: 2014-11-27; просмотров: 1819; Нарушение авторских прав


 

Выполним структурный синтез микропрограммного автомата Мили, заданного своей таблицей переходов-выходов (табл. 27 или табл. 28). В качестве примера синтез будем выполнять по прямой таблице (табл. 27).

1. В исходном автомате количество состояний М=6, следовательно, число элементов памяти

m = ] log 2 M [ = ] log 2 6 [ = 3.

Пусть для синтеза используются JK триггеры.

2. Кодируем внутренние состояния автомата, используя для этого карту Карно (рис.57.) и по возможности метод соседнего кодирования. Рекомендуется самостоятельно закодировать состояние с помощью эвристического алгоритма.

 

3. Строим прямую структурную таблицу переходов-выходов автомата Мили (табл. 31). В данной таблице в столбцах k(am) и k(as) указывается код исходного состояния и состояния перехода соответственно. В столбце функций возбуждения ФВ указывается те значения функций возбуждения, которые на данном переходе обязательно равны 1. Остальные (т.е. равные 0 или принимающие неопределенные значения) не указываются. Это эквивалентно тому, что всем неопределенным значениям функций возбуждения приписывается значение 0, что в общем случае не дает минимальной функции, однако в реальных автоматах минимизация обычно не делается в виду ее неэффективности. Предлагается самостоятельно построить структурную таблицу переходов с указанием всех значений функций возбуждения (в том числе и неопределенных), выполнить минимизацию и сравнить результаты с приведенными ниже.

 

 

Табл. 31. Структурная таблица переходов-выходов автомата Мили.

 

 

Am K(am) as K(as) X Y ФВ
a1 a2 x1 y1y2 J2
    a4 x1 y3y4 J3
a2 a2 x3x2 y1y2 -
  a5 x3 y2y3 J1
    a6 x3x2 y4 J3
a3 a4 y3y4 K1
a4 a1 x2 y2 K3
    a3 x2 y1y4 J1
a5 a1 y2 K1K2
a6 a1 x4 - K2K3
    a2 x4 y1y2 K3

 



4. Для получения функций возбуждения поступаем следующим образом. Выражение для каждой функции получается в виде логической суммы произведений вида aiX, где ai - исходное состояние, X-условие перехода. Для упрощения полученных выражений выполняем все возможные операции склеивания и поглощения:

 

J1 = a2x3 + a4x2 K1 = a3 + a5

J2 = a1x1 K2 = a5 + a6x4

J3 = a1x1 + a2x3x2 K3 = a4x2 + a6x4 + a6x4 = a6 + a4x2

 

5. Для получения функций выходов поступаем аналогично:

y1 = a1x1 + a2x3x2 + a4x2 + a6x4

y2 = a1x1 + a2x3x2 + a2x3 + a4x2 + a5 + a6x4

y3 = a2x3 + a3 + a1x1

y4 = a1x1 + a2x3x2 + a3 + a4x2

 

6. Для построения функциональной схемы автомата по полученным выражениям необходимо либо заменить ai его значениями через Q1Q2Q3 либо получить сигнал, соответствующий ai. Обычно используют второй способ и для получения сигнала ai применяют так называемый дешифратор состояний, на вход которого поступают сигналы с выходов элементов памяти Q1Q2Q3. Кроме того, при построении схемы стараются выделить общие части, встречающиеся в функциях возбуждения или выходных сигналах. В этом случае окончательная система уравнений, по которым строится схема, будет иметь вид:

A = a2x3x2+J2 ; J1 = D + B ; y1 = A + B + E ;

B = a4x2 ; K1 = a3 + a5; y2 = A + D + C + a5 + E ;

C = a4x2 ; J2 = a1x1 ; y3 = D + F + a3 ;

D = a2x3 ; K2 = a5 + a6x4 ; y4 = a3 + B + J3;

E = a1x1 ; K3 = a6 + C ;

F = a1x1 J3 = F+a2x3x2

Функциональная схема автомата, построенная на основании полученных уравнений, представлена на рис. 58.

 


 

 




<== предыдущая лекция | следующая лекция ==>
СИНТЕЗ АВТОМАТА МУРА. | СТРУКТУРНЫЙ СИНТЕЗ АВТОМАТА МУРА


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.