русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Эвристический алгоритм состоит из следующих шагов.


Дата добавления: 2014-11-27; просмотров: 1022; Нарушение авторских прав


 

1.Строим матрицу , состоящую из всех пар номеров (i, j), для которых р(i, j) ¹ 0 (т.е. в автомате есть переход из аi в аj или наоборот) и i<j. Для каждой пары в матрице указываем ее вес р(i, j), совпадающий с весом ребра соединяющего аi и аj.

 

    i j p(i,j)
   
   
T =
   
   
   
   
   

 

2.Упорядочим строки матрицы , для чего построим матрицу следующим образом. В первую строку матрицы поместим пару (a,b) с наибольшим весом р(a,b). В нашем случае (a,b) = (2,3), р(2,3) = 3. Из всех пар, имеющих общий компонент с парой (a,b) выбирается пара (g,d) с наибольшим весом и заносится во вторую строку матрицы . Ясно, что {a,b}×{g,d}¹0. Затем из всех пар, имеющих общий компонент хотя бы с одной из внесенных уже в матрицу пар выбирается пара с наибольшим весом и заносится в матрицу и т.д.. В случае равенства весов пар вычисляются суммы весов компонентов пар (весом р(a) компонента a называется число появлений a в матрице ) и в матрицу заносится пара с наибольшей суммой весов. В рассматриваемом автомате на второе место вслед за парой (2,3) претендуют пары: (1,2) с р(1,2) = 2; (3,4) с р(3,4) = 2, (3,5) с р(3,5) = 2.

Для определения того, какая пара займет второе место в матрице находим веса компонентов пар:

р(1) = 3 р(2) = 3 р(1) + р(2) = 6

р(3) = 4 р(4) = 2 р(3) + р(4) = 6

р(3) = 4 р(5) = 2 р(3) + р(5) = 6

В данном случае для всех пар совпадают и их веса и веса их компонентов. Поэтому на второе место матрицы может быть поставлена любая из пар (1,2), (3,4), (3,5). Но тогда на 3-м и 4-м будут остальные две. Выполнив упорядочивание всех пар, получим матрицу в виде:



    i j p(i,j)
   
   
M =
   
   
   
   
   

 

3. Определяем разрядность кода для кодирования состояний автомата (количество элементов памяти – триггеров). Всего состояний M=5. Тогда

R = ]log2M[ = ]log25[ =3.

Закодируем состояния из первой строки матрицы следующим образом: K2 = K(а2) = 000; K3 = K(а3) = 001.

Для удобства кодирования будем иллюстрировать этот процесс картой Карно:

 

 

4.Вычеркнем из матрицы первую строку, соответствующую закодированным состояниям а2 и а3. Получим матрицу .

 

    i j p(i,j)
   
   
M’ =
   
   
   
   

5.В силу упорядочивания п.2 в первой строке закодирован ровно один элемент. Выберем из первой строки незакодированный элемент и обозначим его g. (В нашем случае g = 1).

6.Строим матрицу , выбрав из строчки, содержащие g.

 

 

        i j p(i,j)
       
Mg = M’ =
       

 

Пусть Bg = {g1,...,gF} – множество элементов из матрицы , которые уже закодированы. Их коды Кg1,..., KgF соответственно. В нашем случае:

Bg = B3 = {2,3} K2 = 000 K3 = 001.

 

7.Для каждого Kgf (f=1, ..., F) найдем – множество кодов, соседних с и еще не занятых для кодирования состояний автомата. (Для соседних кодов кодовое расстояние d=1).

K2 = 000 = {100, 010}

K3 = 001 = {011, 101}.

Построим множество

Если оказывается, что , то строим новое множество , где – множество кодов, у которых кодовое расстояние до кода равно 2 и т.д..

8.Для каждого кода из множества Dg находим кодовое расстояние до кода .

 

K2 = 000 K3 = 001

d(100, 000) = 1 d(100, 001) = 2

d(010, 000) = 1 d(010, 001) = 2

d(011, 000) = 2 d(011, 001) = 1

d(101, 000) = 2 d(100, 001) = 1

 

 

9.Находим значение функции w для каждого кода из множества Dg.

 

 

10.Из множества Dg выбираем код Kg, у которого получилось минимальное значение w в п.9. Выбираем код для состояния a1 К1 =100.

 

 

 

11.Из матрицы вычеркиваем строки, в которых оба элемента уже закодированы, в результате чего получим новую матрицу . Если в новой матрице не осталось ни одной строки, то кодирование закончено. В противном случае возвращаемся к п.5. В нашем случае имеем:

 

    i j p(i,j)
   
   
M’ =
   
   

 

 

К2 = 000 = {010}

K3 = 001 = {011, 101}

 

 

K2 = 000 K3 = 001

d(010, 000) = 1 d(010, 001) = 2

d(011, 000) = 2 d(011, 001) = 1

d(101, 000) = 2 d(101, 001) = 1

 

 

Выбираем К4 = 101.

 

 

 

 

 

К1 = 100 = {110}

K2 = 000 = {010}

К3 = 001 = {011}

 

 

К1 = 100 K2 = 000 K3 = 001

d(110, 100) = 1 d(110, 000) = 2 d(110, 001) = 3

d(010, 100) = 2 d(010, 000) = 1 d(010, 001) = 2

d(011, 100) = 3 d(011, 000) = 2 d(011, 001) = 1

 

 

Выбираем К5 = 011.

 

 

Т.к. все состояния автомата закодированы, то работа алгоритма заканчивается. Общее количество переключений триггеров:

Минимально возможное количество переключений (если бы состояния были закодированы соседним кодированием)

Коэффициент эффективности кодирования:

Рассмотренный алгоритм кодирования является машино-ориентированным, существуют программы, реализующие этот алгоритм.

Необходимо отметить в заключении, что использование алгоритма кодирования для D-триггеров или эвристического алгоритма для других типов триггеров обеспечивает наиболее простую с точки зрения реализации схему, но при этом возможны гонки. Для радикального устранения последних используют аппаратные методы – триггеры с двойной памятью: триггеры, управляемые фронтом и т.д..



<== предыдущая лекция | следующая лекция ==>
Эвристический алгоритм кодирования. | Принцип микропрограммного управления.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.009 сек.