русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Задача синтеза структуры автомата.


Дата добавления: 2014-11-27; просмотров: 1609; Нарушение авторских прав


 

На этапе структурного синтеза предварительно выбираются элементарные автоматы, путем композиции которых строят логические схемы полученных на этапе абстрактного синтеза автоматов Мили и Мура. Если решение задачи структурного синтеза существует, говорят, что заданная система автоматов структурно полна.

Рассмотрим канонический метод структурного синтеза при котором используются элементарные автоматы некоторого специального вида – автоматы с памятью, имеющие более одного состояния, и автоматы без памяти – с одним состоянием. Первые автоматы называются элементамипамяти, вторые – комбинационные или логические элементы.

Теоретическим обоснованием канонического метода структурного синтеза автоматов служит теорема о структурной полноте:

 

Для правильной работы схем сигналы на входе запоминающих элементов не должны непосредственно участвовать в образовании выходных сигналов, которые по цепям обратной связи подавались бы в тот же самый момент времени на эти входы. Поэтому запоминающими элементами должны быть не автоматы Мили, а автоматы Мура. Таким образом, структурно полная система элементарных автоматов должна содержать хотя бы один автомат Мура. В то же время, для синтеза автоматов с минимальным числом элементов памяти, необходимо в качестве таких элементов выбирать автоматы Мура, имеющие полную систему переходов и полную систему выходов – полные автоматы.

Полнота системы переходов означает, что для любой упорядоченной пары состояний автомата найдётся входной сигнал, переводящий первый элемент этой пары во второй, т.е в таком автомате в каждом столбце таблицы переходов должны встречаться все состояния автомата.

Полнота системы выходов автомата Мура состоит в том, что каждому состоянию автомата поставлен в соответствие свой особый выходной сигнал, отличный от выходных сигналов других состояний. Т.о. в таком автомате число выходных сигналов равно числу состояний автомата. В связи с этим, в автоматах памяти будем использовать одни и те же обозначения и для состояний, и для выходных сигналов.



Канонический метод структурного синтеза предполагает представление структурной схемы автомата в виде двух частей: памяти и комбинационной схемы.

Память состоит из элементарных автоматов Мура П1,....,ПZ,....,ПR. После выбора элементов памяти каждое состояние синтезируемого автомата А кодируется набором их состояний. Если все автоматы П1...,ПR одинаковы, что в общем случае необязательно, то их число

где M – число состояний синтезируемого автомата А, а b – число состояний элементарного автомата памяти. Обычно для элементарного автомата b=2, тогда .

Например, переход автомата А, имеющего 5 элементов памяти, алфавит состояний которых – двоичный, из одного состояния (Am)=01011 в другое (A3)= 11000, заключается в изменении состояний соответствующих автоматов памяти: первый элемент памяти переходит из 0 в 1, второй – из 1 в 1, третий из 0 в 0, четвёртый – из 1 в 0, пятый - из 1 в 0.

Переходы автоматов памяти, соответствующие переходам в автомате А, происходят под действием сигналов возбуждения памяти, поступающих с выхода комбинационной схемы на вход памяти автомата. Так на рисунке X=(X1,X2,..,XL) и Y=(Y1,Y2,...,YN) – векторные структурные входной и выходной сигналы автомата, U=(U1,U2,...,UT) – векторная функция возбуждения памяти и Q=(Q1,...,QT) – вектор выходного сигнала обратной связи от элементов памяти автомата.

Рассмотрим отдельно элемент памяти Пz, таблица переходов которого дана в таблице. Множество выходных сигналов элементов памяти совпадает с множеством внутренних состояний.


Полнота переходов очевидна из таблицы (в каждом столбце все состояния встречаются). При рассмотрении автомата на абстрактном уровне его можно представить в виде рис.22 а.

 

При переходе от абстрактного автомата к структурному, входные и выходные сигналы должны быть закодированы наборами сигналов структурного алфавита (входного или выходного соответственно). При двоичном структурном алфавите автомат Пz будет иметь два входных и два выходных канала.

Итак, сами компоненты Uz и Qz при Z = 1,...,R векторов сигналов возбуждения памяти U и сигналов обратной связи от памяти Q также могут быть представлены в виде векторов:

Uz = (UZ1,UZ2,...,UZK) и QZ = (QZ1,QZ2,...,QZR).

Если не оговорено особо, то используется двоичный структурный алфавит как для входных и выходных каналов синтезируемого автомата, так и для входных и выходных каналов автоматов памяти. Алфавит состояний автоматов памяти также обычно двоичный.

При построении функций возбуждения памяти автомата используют функцию входов элемента памяти m(bi,bj), ставящую в соответствие каждой паре состояний (bi,bj) сигнал, который должен быть подан на вход этого автомата для перевода его из состояния bi в состояние bj. Функцию входов удобно задавать в виде таблицы. Для элемента памяти (функция переходов которого приведена ранее) функция входов имеет вид:

 

 


Если входные сигналы элемента памяти q1,...,qp закодированы наборами (UZ1,...,UZK) сигналов на его входных каналах, то элементами таблицы, задающей функцию входов вместо qi будут соответствующие наборы. Так, если q1 = 00, q2 = 01, q3 = 10, то соответствующая f входов будет иметь вид рис.23a.

 



<== предыдущая лекция | следующая лекция ==>
Элементарные цифровые автоматы с памятью | Элементарные цифровые автоматы – элементы памяти.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.