Типичная схема маломощного каскада содержит оконечные транзисторы VT4, VT5. Режим АВ задаётся смещением, получаемым с помощью ГМСН в виде диодов VD1, VD2, через которые протекает ток предоконечного транзистора VT1, нагруженного на ГСТ (изображён эквивалентным генератора тока . Вместо диодов VD1, VD2 может применяться схема на транзисторах).
Транзисторы VT2, VT3 и сопротивления R2, R3 представляют схему защиты транзисторов VT4, VT5 от перегрузки большим током, возникающим в случае короткого замыкания нагрузки. Плечи каскада работают поочерёдно. Поэтому достаточно рассмотреть работу схемы защиты только одного плеча, например верхнего, когда ток нагрузки протекает через транзистор VT4. Если ток увеличивается настолько, что падение напряжения на R2 достаточно для открывания транзистора VT2, его сопротивление уменьшится и зашунтирует транзистор VT4, предотвращая дальнейшее увеличение его тока. В другой полупериод усиливаемого колебания аналогично работают транзистор VT3 и сопротивление R3. Такую схему защиты широко применяют в ОУ, где типичные сопротивления R2, R3 составляют 20…50 Ом.
Выходные каскады мощных интегральных усилителей имеют некоторые особенности. Для уменьшения тока покоя транзистора VT1 оконечные транзисторы плеч делают составными. В нижнем плече первый транзистор VT4 берётся p-n-p с малым . Поэтому для обеспечения достаточного усиления в качестве второго транзистора применяют составной транзистор.
Для получения большого КПД, часто предусматривают возможность подачи в точкуа напряжение вольтодобавки. Для этого точки а, б выводят из микросхемы. Вместо резистора нагрузкиRк может применяться ГСТ, как, например, в микросхеме К174УН7. Для защиты оконечных транзисторов может применяться вышерассмотренная схема, однако сопротивления R2, R3 не встраивают внутрь микросхемы во избежание её перегрева, а подключают внешние детали.