русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

В виде последовательного соединения двух фильтров


Дата добавления: 2014-11-27; просмотров: 2884; Нарушение авторских прав


 

Из рисунка видно, что для хранения одних и тех же переменных используются две линии задержки, поэтому одну из них можно удалить. При этом схема фильтра преобразуется к виду, представленному на рисунке 2.8. Это и есть каноническая форма программной реализации фильтра.

Рисунок 2.8 – Каноническая форма программной реализации фильтра

Достоинством канонической формы является в два раза меньшее количество элементов задержки, следовательно, ячеек памяти вычислительного устройства.

Рисунок 2.9- Последовательное (а) и параллельное (б) соединение

звеньев фильтра

Типовая схема звена второго порядка приведена на рисунке 2.10. На входе звена показан масштабный коэффициент ML (как правило, меньше единицы), предотвращающий появление в процессе вычислений значений сигналов фильтра, выходящих за пределы разрядной сетки вычислительного устройства.

Рисунок 2.10 – Типовое звено второго порядка

 

Лекция 5. Частотная характеристика и устойчивость цифровых

фильтров

2.5. Частотная характеристика цифрового фильтра

 

Комплексным коэффициентом передачи фильтра является отношение комплексной амплитуды выходного сигнала фильтра к комплексной амплитуде входного синусоидального сигнала

.

Коэффициентом передачи фильтра К называется модуль комплексного коэффициента передачи

Частотной характеристикой цифрового фильтра называется зависимость комплексного коэффициента передачи фильтра от частоты.

Амплитудно-частотной характеристикой (АЧХ) называется зависимость модуля комплексного коэффициента передачи от частоты

.

Фазочастотной характеристикой (ФЧХ) называется зависимость аргумента комплексного коэффициента передачи фильтра от частоты.

.

Для определения комплексного коэффициента передачи фильтра подадим на вход фильтра с прямой формой реализации (рисунок 2.5) комплексный сигнал с единичной амплитудой



.

Согласно определению комплексного коэффициента передачи комплексный выходной сигнал должен быть равен

.

Из схемы рисунка 2.5 следует, что выходной комплексный сигнал фильтра определяется следующим соотношением

.

Из последнего соотношения получим

(2.11)

Сравнивая последнее соотношение с выражением для системной функции цифрового фильтра (2.7), можно сформулировать правило определения комплексного коэффициента передачи при известной системной функции фильтра: для нахождения комплексного коэффициента передачи нужно в выражении для системной функции заменить z на :

 

, (2.12)

где - нормированная частота – отношение текущей частоты f к частоте дискретизации FД.

 

2.6. Цифровой резонатор

 

Цифровой резонатор (рисунок 2.11) представляет собой звено второго порядка, у которого коэффициенты системной функции B1 и B2 равны нулю, а коэффициент B0=1.

 

Рисунок 2.11 – Цифровой резонатор

 

Масштабный коэффициент на входе фильтра M предотвращает появление значений сигналов резонатора, выходящих за пределы разрядной сетки вычислительного устройства, на котором он реализован.

Системная функция резонатора описывается следующим соотношением

. (2.13)

Определим полюсы системной функции. Для этого приравняем знаменатель нулю и найдем корни полученного квадратного уравнения

,

.

В цифровом резонаторе полюсы системной функции должны быть комплексно-сопряжёнными. В противном случае (2.13) представляет собой системную функцию фильтра нижних частот.

Следовательно, должно выполняться условие

.

При этом условии полюсы системной функции определяются следующим соотношением

, (2.14)

где .

На рисунке 3.11 показаны полюсы системной функции резонатора на комплексной плоскости z. Окружность единичного радиуса с центром в начале координат является геометрическим местом точек, для которых выполняется условие

.

 

 

 

Рисунок 2.12 – Полюсы системной функции z1 и z2

 

При изменении θ от 0 до π частота изменяется от 0 до FД / 2. При этом конец вектора перемещается по окружности единичного радиуса. Расстояние конца этого вектора от полюса системной функции минимально при , т.е. при , где - резонансная частота резонатора.

Подставляя в последнее соотношение θ0 из (2.14), получим

. (2.15)

Из последнего соотношения видно, что резонансная частота зависит от частоты дискретизации FД и коэффициентов системной функции A1 и A2. При A1=0 резонансная частота равна четверти частоты дискретизации, при A1<0 резонансная частота меньше четверти частоты дискретизации, а при A1> 0 – больше четверти частоты дискретизации.

Определим комплексный коэффициент передачи резонатора при A1=0.

Подставляя в (2.13) , получим

.

Последнее соотношение позволяет определить АЧХ и ФЧХ резонатора:

, (2.16)

. (2.17)

Из (2.16) видно, что на резонансной частота при резонансный коэффициент передачи равен

. (2.18)

На рисунке 2.13 приведена АЧХ, рассчитанная по (2.16), а на рисунке 2.14 – ФЧХ, рассчитанная по (2.17) при A2=0.9, M=1-A2. АЧХ и ФЧХ при A2=0.99 приведены на рисунках 2.15 и 2.16 соответственно.

Рисунок 2.13 -АЧХ резонатора при =0.9, =0, M=1-

 

Рисунок 2.14 -ФЧХ резонатора при =0.9, =0

 

Рисунок 2.15 -АЧХ резонатора при =0.99, =0, M=1-

 

Рисунок 2.16 -ФЧХ резонатора при =0.99, =0

 

Из приведенных графиков видно, что АЧХ цифрового резонатора по форме похожа на резонансную кривую аналогового колебательного контура, а ФЧХ резонатора отличается от ФЧХ аналогового контура тем, что стремится к нулю при больших расстройках относительно резонансной частоты. Вблизи резонансной частоты ФЧХ цифрового резонатора подобна ФЧХ аналогового колебательного контура.

Сравнение характеристик при разных значениях коэффициента А2 показывает, что при стремлении А2 к единице полоса пропускания резонатора уменьшается (резонанс становится более острым) и увеличивается крутизна ФЧХ вблизи резонансной частоты.

Для выяснения влияния коэффициента А1 на свойства резонатора рассмотрим АЧХ и ФЧХ при А1<0 и при A1>0. Соответствующие графики приведены на рисунках 2.17 .. 2.20.

Рисунок 2.17 - АЧХ резонатора при =0.9, = -0.9, M=1-

 

Рисунок 2.18 -ФЧХ резонатора при =0.9, = -0.9

 

Рисунок 2.19 - AЧХ резонатора при =0.9, = 0.9, M=1-

 

 

Рисунок 2.20 - ФЧХ резонатора при =0.9, =0.9

Из приведенных рисунков видно, что коэффициент А1 сильно влияет на резонансную частоту резонатора. В результате АЧХ и ФЧХ сдвигаются вдоль оси частот. При этом нарушается симметрия АЧХ, становятся различными абсолютные значения максимального и минимального фазового сдвигов, вносимых резонатором, изменяется максимальное значение коэффициента передачи.

 

2.7. Однородный фильтр

 

Однородным называется нерекурсивный фильтр, у которого все коэффициенты системной функции одинаковы. Этот фильтр называют также фильтром скользящего среднего. Схема фильтра приведена на рисунке 2.21.

Рисунок 2.21 – Однородный фильтр

 

Из рисунка видно, что выходной сигнал фильтра определяется следующими соотношениями

Определим Z-преобразования последовательностей vn и yn

Определим системную функцию фильтра

.

Используя подстановку , определим комплексный коэффициент передачи

 

(2.19)

Обозначим

. (2.20)

 



<== предыдущая лекция | следующая лекция ==>
Системной функцией цифрового фильтра называется отношение Z-преобразования выходного сигнала фильтра к Z-преобразованию входного сигнала | Определим АЧХ и ФЧХ фильтра


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.197 сек.