русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Светодиодные индикаторы.


Дата добавления: 2014-11-27; просмотров: 810; Нарушение авторских прав


Газоразрядные индикаторы — это более экономичные индикаторы по сравнению с лампами накаливания, но использование высокого напряжения питания привело к тому, что они в настоящее время практически не используются.

В настоящее время практически везде для отображения двоичной информации используются светодиоды. Это обусловлено тем, что надёжность светодиодов значительно превосходит надёжность как индикаторных ламп накаливания, так и газоразрядных (неоновых) индикаторных ламп. Светодиоды труднее разбить, так как их корпус обычно состоит из прозрачной пластмассы, а вес значительно меньше индикаторных ламп. Кроме того при включении светодиодов не возникает импульсного тока значительной величины, который разрывает холодную нить накаливания своим магнитным полем.

К.п.д. светодиодов, особенно современных, тоже значительно превосходит к.п.д. индикаторных ламп. Основная причина повышенного к.п.д. - это принципиальное отсутствие теплового излучения. Электрический ток непосредственно преобразуется в световое излучение. Так как светодиод, так же как и газоразрядная лампа, управляется током, то схема его подключения практически совпадает со схемой подключения газоразрядной лампы. Она приведена на рисунке 3.6.

Рисунок 3.6. Схема подключения светодиодного индикатора к цифровой ТТЛ микросхеме.

Расчет токоограничивающего резистора в этой схеме не отличается от расчета подобного резистора газоразрядного индикатора. Отличие только в том, что падение напряжения на светодиодах лежит в пределах от 1,5 до 3 Вольт. Расчет резисторов R1 и R2 точно такой же как и в остальных транзисторных ключах.

Теперь вспомним, что выходной ток современных цифровых микросхем превосходит минимальный ток зажигания светодиода. Это означает, что можно обойтись без дополнительного транзисторного ключа для подключения светодиода. В результате схема значительно упрощается. Теперь достаточно просто ограничить ток через светодиод до допустимой величины. Новая схема приведена на рисунке 3.7.



Рисунок 3.7. Схема подключения светодиодного индикатора к цифровой микросхеме с пятивольтовым питанием.

В схеме, приведенной на рисунке 3.7, используется ток нуля цифровой микросхемы. Этот ток в большинстве цифровых схем больше тока единицы. В этой схеме мы не накладывали никаких ограничений на используемую цифровую микросхему, кроме того, что она должна обеспечивать необходимый выходной ток. Однако при использовании обычного выходного каскада необходимо, чтобы напряжение питания микросхемы было равно напряжению, подаваемому на светодиод. Однако на светодиод нужно подавать напряжение больше пяти вольт. Только в этом случае светодиод надёжно откроется.

В большинстве современных микросхем ток единицы превышает минимальный ток зажигания светодиода. В ряде случаев это может упростить принципиальную схему устройства. Схема с использованием единичного тока цифровой микросхемы приведена на рисунке 8. Однако следует отметить, что если в схеме, приведенной на рисунке 3.7, светодиод зажигается нулевым потенциалом, то в схеме, приведенной на рисунке 8, для зажигания светодиода на выходе микросхемы следует сформировать единичный потенциал. В этой схеме напряжение питания цифровой микросхемы тоже должно превышать пять вольт.

Рисунок 3.8. Использование тока единицы для зажигания светодиодного индикатора.

Как уже говорилось ранее, в современных цифровых микросхемах часто используется напряжение питания 3.3 В, 2.5 В или даже 0.7 В! Как же быть в таком случае? Неужели использовать схему с дополнительным транзисторным ключом? Во всех цифровых схемах присутствуют микросхемы с открытым коллектором. Выходной транзистор этих микросхем способен выдерживать напряжение, превышающее напряжение питания самой микросхемы, поэтому такие микросхемы можно использовать для подключения светодиодных индикаторов. Такая схема приведена на рисунке 3.9.

Рисунок 3.9. Схема подключения светодиодного индикатора к цифровой микросхеме с открытым коллектором.



<== предыдущая лекция | следующая лекция ==>
Газоразрядные индикаторы. | Принципы работы жидкокристаллических индикаторов


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.039 сек.