русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Системы счисления


Дата добавления: 2014-11-27; просмотров: 723; Нарушение авторских прав


Начнем с определения системы счисления. Система счисления - это совокупность правил записи чисел цифровыми знаками. Системы счисления бывают позиционные и непозиционные. В настоящее время и в технике и в быту широко используются как позиционные, так и непозиционные системы счисления. Рассмотрим сначала примеры непозиционных систем счисления.

В качестве классического примера непозиционной системы счисления обычно приводят римскую форму записи чисел. Там не менее это не единственная непозиционная система счисления, используемая в настоящее время.

Сейчас, как и в глубокой древности, для записи числа используются так называемые “палочки”. Эта форма записи чисел наиболее понятна и требует для записи числа всего один символ. Число образуется суммой этих “палочек”. Однако при записи больших чисел возникают неудобства. Число получается громоздким и его трудно читать.

В следующем варианте непозиционной системы счисления стали использовать несколько символов (цифр). Каждая цифра обозначает различное количеств единиц. Конечное число точно так же как и в предыдущем варианте образуется суммой цифр. Наиболее яркий вариант использования такой системы счисления - это денежные отношения. Мы с ними сталкиваемся каждый день. Здесь никому не приходит в голову, что сумма, которую мы выкладываем за продукты, может зависеть от того, в каком порядке мы расположим монеты на столе! Номинал монеты или банкноты не зависит от того, в каком порядке она была вынута из кошелька. Это классический пример непозиционной системы счисления.

Однако чем большее число требуется представить в такой системе счисления, тем большее количество цифр требуется для этого. Позиционные системы счисления были придуманы относительно недавно для того, чтобы сэкономить количество цифр, используемое для записи чисел.

Значение цифры в позиционной системе счисления зависит от её позиции в записываемом числе. В позиционной системе счисления появляются два очень важных понятия - основание системы счисления и вес цифры. Дело в том, что в позиционной системе счисления число представляется в виде формулы разложения:



Ap=anpn+an-1pn-1+...+a2p2 +a1p1+a0p0+a-1p-1+a-2p -2+...+a-kp-k

где p - основание системы счисления
pi - вес единицы данного разряда
ai - цифры, разрешённые в данной системе счисления.

При этом количество цифр в системе счисления зависит от основания. Количество цифр равно основанию системы счисления. В двоичной системе счисления две цифры, в десятичной – десять, а в шестнадцатеричной – шестнадцать. Число в любой позиционной системе счисления записываются в виде последовательности цифр:

A=anan-1...a2a1a0,a-1a-2 ...a-k,

где ai – цифры данной системы счисления, а цифра, соответствующая единицам определяется по положению десятичной запятой (или десятичной точки в англоязычных странах). Каждая цифра, использованная в записи числа, называется разрядом.

Какие же системы счисления применяются в настоящее время? Первый ответ, который я ожидаю – это десятичная система счисления. А ещё? Да, да не удивляйтесь! Мы широко используем и другие системы счисления! Достаточно посмотреть себе на левую руку. Там мы увидим часы. Сколько минут помещается в часе? Шестьдесят! Сколько секунд помещается в минуте? Шестьдесят! Налицо признаки шестидесятеричной системы счисления. Это наследование древней вавилонской системы счисления, которую вместе с компасом и часами европейцы заимствовали от арабов.

А еще примеры? Да сколько угодно! Картушка компаса делится на восемь румбов. Чем не восьмеричная система счисления? А давно ли в России отказались от полушек (четверть копейки) или грошей (половина копейки)? А следующее значение монеты – две копейки! Чем не двоичная система счисления?

Рассмотрим подробнее системы счисления, наиболее часто используемые в цифровой технике.



<== предыдущая лекция | следующая лекция ==>
Регенерация цифрового сигнала (Триггер Шмитта) | Двоичная система счисления


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.