русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Инвертор


Дата добавления: 2014-11-27; просмотров: 2053; Нарушение авторских прав


Простейшим логическим элементом является инвертор, который просто изменяет значение входного сигнала на прямо противоположное значение. Его логическая функция записывается в следующем виде:

где черта над входным значением и обозначает изменение его на противоположное. То же самое действие можно записать при помощи таблицы истинности, приведённой в таблице 1. Так как вход у этого логического элемента только один, то его таблица истинности состоит только из двух строк.

Таблица 1.1 Таблица истинности логического инвертора

In Out
0 1
1 0

В качестве логического инвертора можно использовать обычный транзисторный усилитель с транзистором, включенном по схеме с общим эмиттером или истоком. Схема логического инвертора, выполненная на биполярном n-p-n транзисторе, приведена на рисунке 1.


Рисунок 1.1 Схема простейшего логического инвертора

Схемы логических инверторов могут обладать различным временем распространения сигнала и могут работать на различные виды нагрузки. Они могут быть выполнены на одном или на нескольких транзисторах, но независимо от схемы этого логического элемента и её параметров они осуществляют одну и ту же функцию. Для того, чтобы особенности включения транзисторов не затеняли выполняемую функцию, были введены специальные обозначения для цифровых микросхем — условно-графические обозначения. Условно-графическое изображение инвертора приведено на рисунке 2.


Рисунок 2. Условно-графическое изображение логического инвертора

Логический элемент "И"

Следующим простейшим логическим элементом является схема, реализующая операцию логического умножения "И":

F(x1,x2) = x1^x2

где символ ^ и обозначает функцию логического умножения. Иногда эта же функция записывается в другом виде:

F(x1,x2) = x1^x2 = x1·x2 = x1&x2.



То же самое действие можно записать при помощи таблицы истинности, приведённой в таблице 2. В формуле, приведенной выше использовано два аргумента. Поэтому элемент, выполняющий эту функцию имеет два входа. Такой элемент обозначается "2И". Для элемента "2И" таблица истинности будет состоять из четырех строк (22 = 4).

Таблица 1.2 Таблица истинности схемы, выполняющей логическую функцию "2И"

In1 In2 Out

Как видно из приведённой таблицы истинности активный сигнал на выходе этого логического элемента появляется только тогда, когда и на входе X и на входе Y будут присутствовать логические единицы. То есть этот логический элемент действительно реализует операцию "И"

Проще всего понять, как работает логический элемент "И", при помощи схемы, построенной на идеализированных ключах с электронным управлением, как это показано на рисунке 1.2 В этой схеме ток будет протекать только тогда, когда оба ключа будут замкнуты, а значит, единичный уровень на выходе схемы появится только при двух логических единицах на входе.


Рисунок 1.2 Принципиальнае схема, реализующая логическую функцию "2И"

Условно-графическое изображение схемы, выполняющей логическую функцию "2И", на принципиальных схемах приведено на рисунке 1.3, и с этого момента схемы, выполняющие функцию “И” будут приводиться именно в таком виде. Это изображение не зависит от конкретной принципиальной схемы устройства, реализующей функцию логического умножения.


Рисунок 1.3 Условно-графическое изображение схемы, выполняющей логическую функцию "2И"

Точно так же описывается и функция логического умножения трёх переменных:

F(x1,x2,x3)=x1^x2^x3

Её таблица истинности будет содержать уже восемь строк (23 = 4). Таблица истинности трёхвходовой схемы логического умножения "3И" приведена в таблице 1.3, а условно-графическое изображение на рисунке 1.4. В схеме же, построенной по принципу схемы, приведённой на рисунке 1.2, придётся добавить третий ключ.

Таблица 1.3 Таблица истинности схемы, выполняющей логическую функцию "3И"

In1 In2 In3 Out


Рисунок 1.4. Условно-графическое изображение схемы, выполняющей логическую функцию "3И"

Логический элемент "ИЛИ"

Следующим простейшим логическим элементом является схема, реализующая операцию логического умножения "И":

F(x1,x2) = x1Vx2

где символ V обозначает функцию логического сложения. Иногда эта же функция записывается в другом виде:

F(x1,x2) = x1Vx2 = x1+x2 = x1|x2.

То же самое действие можно записать при помощи таблицы истинности, приведённой в таблице 4. В формуле, приведенной выше использовано два аргумента. Поэтому логический элемент, выполняющий эту функцию имеет два входа. Такой элемент обозначается "2ИЛИ". Для элемента "2ИЛИ" таблица истинности будет состоять из четырех строк (22 = 4).

Таблица 1.4. Таблица истинности схемы, выполняющей логическую функцию "2ИЛИ"

In1 In2 Out

Как и в случае, рассмотренном для схемы логического умножения, воспользуемся для реализации схемы "2ИЛИ" ключами. На этот раз соединим ключи параллельно. Схема, реализующая таблицу истинности 1.4, приведена на рисунке 1.5. Как видно из приведённой схемы, уровень логической единицы появится на её выходе, как только будет замкнут любой из ключей, то есть схема реализует таблицу истинности, приведённую в таблице 1.4.


Рисунок 1.5. Принципиальная схема, реализующая логическую функцию "2ИЛИ"

Так как функция логического суммирования может быть реализована различными принципиальными схемами, то для обозначения этой функции на принципиальных схемах используется специальный символ "1", как это приведено на рисунке 1.6.


Рисунок 1.6. Условно-графическое изображение логического элемента, выполняющего функцию "2ИЛИ"

 

 

Глава 2



<== предыдущая лекция | следующая лекция ==>
Описание логической функции цифровых схем | Диодно-транзисторная логика (ДТЛ)


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.