Простейшим логическим элементом является инвертор, который просто изменяет значение входного сигнала на прямо противоположное значение. Его логическая функция записывается в следующем виде:
где черта над входным значением и обозначает изменение его на противоположное. То же самое действие можно записать при помощи таблицы истинности, приведённой в таблице 1. Так как вход у этого логического элемента только один, то его таблица истинности состоит только из двух строк.
В качестве логического инвертора можно использовать обычный транзисторный усилитель с транзистором, включенном по схеме с общим эмиттером или истоком. Схема логического инвертора, выполненная на биполярном n-p-n транзисторе, приведена на рисунке 1.
Схемы логических инверторов могут обладать различным временем распространения сигнала и могут работать на различные виды нагрузки. Они могут быть выполнены на одном или на нескольких транзисторах, но независимо от схемы этого логического элемента и её параметров они осуществляют одну и ту же функцию. Для того, чтобы особенности включения транзисторов не затеняли выполняемую функцию, были введены специальные обозначения для цифровых микросхем — условно-графические обозначения. Условно-графическое изображение инвертора приведено на рисунке 2.
Рисунок 2. Условно-графическое изображение логического инвертора
Логический элемент "И"
Следующим простейшим логическим элементом является схема, реализующая операцию логического умножения "И":
F(x1,x2) = x1^x2
где символ ^ и обозначает функцию логического умножения. Иногда эта же функция записывается в другом виде:
F(x1,x2) = x1^x2 = x1·x2 = x1&x2.
То же самое действие можно записать при помощи таблицы истинности, приведённой в таблице 2. В формуле, приведенной выше использовано два аргумента. Поэтому элемент, выполняющий эту функцию имеет два входа. Такой элемент обозначается "2И". Для элемента "2И" таблица истинности будет состоять из четырех строк (22 = 4).
Как видно из приведённой таблицы истинности активный сигнал на выходе этого логического элемента появляется только тогда, когда и на входе X и на входе Y будут присутствовать логические единицы. То есть этот логический элемент действительно реализует операцию "И"
Проще всего понять, как работает логический элемент "И", при помощи схемы, построенной на идеализированных ключах с электронным управлением, как это показано на рисунке 1.2 В этой схеме ток будет протекать только тогда, когда оба ключа будут замкнуты, а значит, единичный уровень на выходе схемы появится только при двух логических единицах на входе.
Условно-графическое изображение схемы, выполняющей логическую функцию "2И", на принципиальных схемах приведено на рисунке 1.3, и с этого момента схемы, выполняющие функцию “И” будут приводиться именно в таком виде. Это изображение не зависит от конкретной принципиальной схемы устройства, реализующей функцию логического умножения.
Рисунок 1.3 Условно-графическое изображение схемы, выполняющей логическую функцию "2И"
Точно так же описывается и функция логического умножения трёх переменных:
F(x1,x2,x3)=x1^x2^x3
Её таблица истинности будет содержать уже восемь строк (23 = 4). Таблица истинности трёхвходовой схемы логического умножения "3И" приведена в таблице 1.3, а условно-графическое изображение на рисунке 1.4. В схеме же, построенной по принципу схемы, приведённой на рисунке 1.2, придётся добавить третий ключ.
Рисунок 1.4. Условно-графическое изображение схемы, выполняющей логическую функцию "3И"
Логический элемент "ИЛИ"
Следующим простейшим логическим элементом является схема, реализующая операцию логического умножения "И":
F(x1,x2) = x1Vx2
где символ V обозначает функцию логического сложения. Иногда эта же функция записывается в другом виде:
F(x1,x2) = x1Vx2 = x1+x2 = x1|x2.
То же самое действие можно записать при помощи таблицы истинности, приведённой в таблице 4. В формуле, приведенной выше использовано два аргумента. Поэтому логический элемент, выполняющий эту функцию имеет два входа. Такой элемент обозначается "2ИЛИ". Для элемента "2ИЛИ" таблица истинности будет состоять из четырех строк (22 = 4).
Как и в случае, рассмотренном для схемы логического умножения, воспользуемся для реализации схемы "2ИЛИ" ключами. На этот раз соединим ключи параллельно. Схема, реализующая таблицу истинности 1.4, приведена на рисунке 1.5. Как видно из приведённой схемы, уровень логической единицы появится на её выходе, как только будет замкнут любой из ключей, то есть схема реализует таблицу истинности, приведённую в таблице 1.4.
Так как функция логического суммирования может быть реализована различными принципиальными схемами, то для обозначения этой функции на принципиальных схемах используется специальный символ "1", как это приведено на рисунке 1.6.
Рисунок 1.6. Условно-графическое изображение логического элемента, выполняющего функцию "2ИЛИ"