русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Транзистор-транзисторная логика (ТТЛ)


Дата добавления: 2014-11-27; просмотров: 1055; Нарушение авторских прав


Принципиальная схема ТТЛ-элемента, являющегося основой ряда полупроводниковых интегральных микросхем для цифровых устройств, приведена на рис. 4.18. В данной схеме применен многоэмиттерный транзистор VT1. Если хотя бы один эмиттерно-базовый переход его включён в прямом направлении, то коллекторный переход многоэмиттерного транзистора VT1 смещен в обратном направлении. При отсутствии входных переходов включённых в прямом направлении базо-коллекторный переход включён в прямом направлении. Пусть на всех входах вх1, вх2 и вх3 схемы (см. рис.4.18) действуют сигналы, уровень которых соответствует уровню логической «1» (напряжение около 3,5 В). При данном уровне входных сигналов базо-коллекторный переход смещён в прямом направлении и через резистор R1 и коллекторный переход транзистора VT1 течет ток по следующей цепи: от источник питания +Е через резистор R1, базо-коллекторный переход транзистора VT1, базо-эмиттерный переход VT2 и базо-эмиттерный переход VT4. Все входящие в данную цепь переходы включены в прямом направлении. Эмиттерно-базовые переходы транзистора VT1 смещены в обратном направлении. Режим транзистора VT1 оказывается инверсным. Транзисторы VT2 и VT4 насыщены. Потенциал VT2 ниже, что обеспечивает запирание VT3. Следовательно VT3 заперт (режим отсечки), VT4 открыт и насыщен, что обеспечивает на выходе схемы низкий потенциал (уровень «0»).

Рис.4.18

При другом сочетании входных сигналов, когда хотя бы один из них имеет низкий уровень напряжения – уровень логического «0» (примерно 0,3 В), тогда эмиттерно-базовый переход, соответствующего входа, смещен в прямом направлении. Прямой ток этого перехода протекает по цепи, включающей источник питания +Е, резистор R1, эмиттерно-базовый переход и источник входного сигнала. Считая напряжение на эмиттерно-базовом переходе, смещенном в прямом направлении, близким к 0,6 В, получим, что напряжение на базе транзистора VT1 относительно корпуса равно 0,9 В ( ).



Напряжение на коллекторе многоэмиттерного транзистора будет меньше на значение падения напряжения на включенном коллекторном переходе , т.е. примерно 0,4 В, и составляет всего 0,5 В. Это напряжение меньше, чем сумма напряжений отсечки и . Входное сопротивление выключенного транзистора VT2, составляющее коллекторную нагрузку многоэмиттеного транзистора VT1, очень велико. Входным током запертого транзистора VT2 служит малый ток . Этот ток и является коллекторным током транзистора VT1. Таким образом, транзистор VT1 имеет значительный ток базы, протекающий через открытый базо-эмиттерный переход, и очень малый коллекторный ток, равный .

При таком соотношении базового и коллекторного токов транзистор VT1 насыщен; его коллекторный переход смещен в обратном направлении. Эмиттерно-базовый ток, протекающий через открытый входной переход, складывается из тока базы и тока коллектора . Значение эмиттерного тока соответствует входному току элемента при наличии напряжения уровня логического «0» на входе. Остальные эмиттеры VT1 по-прежнему работают в инверсном режиме и ток их мал.

Таким образом, при напряжении соответствующем уровню логического «0» хотя бы на одном из входов транзистор VT2 заперт. Потенциал коллектора VT2 близок к +Е, что открываети насыщает VT3. При этом VT4 заперт, т.к. потенциал его базы близок к нулю. На выходе схемы при этом имеет место высокое напряжение порядка 3,5В (уровень логической «1»), т.к. +Е поступает на выход схемы через насыщенный транзистор VT3 и диод VD1 включённый в прямом направлении. Диоды VD2-VD4 выполняют защитные функции микросхемы от отрицательных входных импульсов. Указанное преобразование сигнала соответствует логической операции «И-НЕ», которую выполняет каскад на многоэмиттерном транзисторе VT1 операция «И» инвертор, собранный на транзисторах VT2, VT3 и VT4 (операция «НЕ»).

Параметры схемы «И-НЕ» серии К155: ; ; ; ; ; .

 

 

 



<== предыдущая лекция | следующая лекция ==>
Диодно-транзисторная логика (ДТЛ) | Логические элементы на МОП и КМОП-структурах.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.