Сигма-дельта (SD АЦП) известны почти тридцать лет, но только недавно появилась технология (цифровые микросхемы с очень высокой степенью интеграции) для их производства в виде недорогих монолитных интегральных схем. В настоящее время они используются во многих приложениях, где требуется недорогой, узкополосный, экономичный АЦП с высоким разрешением.
Своим названием эти преобразователи обязаны наличием в них двух блоков: сумматора (обозначение операции - S) и интегратора (обозначение операции - D ). Один из принципов, заложенных в такого рода преобразователях, позволяющий уменьшить погрешность, вносимую шумами, а следовательно увеличить разрешающую способность - это усреднение результатов измерения на большом интервале времени. Основные узлы АЦП - это сигма-дельта модулятор и цифровой фильтр. Схема n-разрядного сигма-дельта модулятора первого порядка приведена на рис. 12.19. Работа этой схемы основана на вычитании из входного сигнала Uвх(t) величины сигнала на выходе ЦАП, полученной на предыдущем такте работы схемы. Полученная разность интегрируется, а затем преобразуется в код параллельным АЦП невысокой разрядности. Последовательность кодов поступает на цифровой фильтр нижних частот.
Рис 12.19. Структурная схема n-разрядного сигма-дельта модулятора первого порядка.
Порядок модулятора определяется численностью интеграторов и сумматоров в его схеме. Сигма-дельта модуляторы N-го порядка содержат N сумматоров и N интеграторов и обеспечивают большее соотношение сигнал/шум при той же частоте отсчетов, чем модуляторы первого порядка. Примерами сигма-дельта модуляторов высокого порядка являются одноканальный AD7720 седьмого порядка и двухканальный ADMOD79 пятого порядка.
Основным принципом SD АЦП является усреднение результатов измерения на большом интервале времени для уменьшения погрешности, вносимой шумами, и увеличения разрешающей способности. SD АЦП имеет преимущества перед другими интегрирующими АЦП (однотактного и многотактного интегрирования). Линейность характеристики SD АЦП выше, так как его интегратор работает в узком динамическом диапазоне, и нелинейность переходной характеристики усилителя (на котором построен интегратор) сказывается значительно меньше. Емкость конденсатора интегратора SD АЦП значительно меньше (десятки пФ), и конденсатор может быть изготовлен прямо на кристалле СБИС. SD АЦП практически не имеет внешних элементов, что существенно сокращает площадь, занимаемую им на плате, и снижает уровень шумов. Большинство интегральных сигма-дельта АЦП имеют развитую аналоговую и цифровую часть, встроенный контроллер. Это позволяет реализовать режимы автоматической установки нуля и самокалибровки полной шкалы, хранить калибровочные коэффициенты и передавать их по запросу внешнего вычислительного стройства. SD АЦП широко применяют в измерительных устройствах, где требуется большой динамический диапазон при низкой скорости выдачи отсчётов.
В SD АЦП аналоговый сигнал квантуется с низким разрешением на частоте, превышающей максимальную частоту спектра сигнала. Используя методику передискретизации (процесса шумообразования в SD модуляторе) в сочетании с цифровой фильтрацией, можно значительно повысить разрядность. Для снижения эффективной скорости поступления отсчётов на выходе АЦП применяется децимация. Однобитовые SD АЦП обладают превосходной дифференциальной и интегральной линейностью благодаря линейности однобитового квантователя. Характерными представителями узкополосных 24-х разрядных SD АЦП (для промышленного применения) являются AD7711/14 фирмы ANALOG DEVICES, имеющие последовательный интерфейс и программируемый коэффициент усиления от 1 до 128. Анализируя параметры указанных АЦП, следует отметить низкую потребляемую мощность (10 мВт) микросхемы AD7714 при возможности питания от источников напряжения как +5, так и +3 В.
SD АЦП содержит очень простую аналоговую электронику (компаратор, источник опорного напряжения, коммутатор и один или большее количество интеграторов и аналоговых сумматоров) и весьма сложную цифровую вычислительную схему. Эта схема состоит из цифрового сигнального процессора (DSP), который работает как фильтр (в общем случае, но не всегда — это низкочастотный полосовой фильтр). Нет необходимости в точности знать, как работает фильтр, чтобы понимать то, что он делает. Для понимания того, как работает SD АЦП, важно познакомиться с концепциями избыточной дискретизации, формирования формы кривой распределения шума квантования, цифровой фильтрации и децимации.
Рассмотрим методику избыточной дискретизации с анализом в частотной области. Там, где преобразование постоянного напряжения имеет ошибку квантования до 1/2 младшего разряда (LSB), дискретная система, работающая с переменным напряжением или током, обладает шумом квантования. Идеальный классический N-разрядный АЦП имеет среднеквадратичное значение шума квантования, равное . Шум квантования равномерно распределен в пределах полосы Найквиста от 0 до fs/2 (где q — значение младшего значащего бита и fs — частота дискретизации), как показано на рис.12.20. Поэтому, его отношение сигнал/шум для полнодиапазонного синусоидального входного сигнала будет (6,02N+1,76)дБ. Если АЦП несовершенен и его реальный шум больше, чем его теоретический минимальный шум квантования, то эффективная разрешающая способность будет меньше, чем N-разрядов. Его фактическая разрешающая способность (часто известная как эффективное число разрядов или ENOB) будет определена, как 6,02дБ.
Если мы выберем более высокую частоту дискретизации K×fs (см. рис.12.20б), то среднеквадратичное значение шума квантования остается , но шум теперь распределен по более широкой полосе от 0 до fs /2. Если мы затем используем на выходе цифровой низкочастотный фильтр, то значительно уменьшим шум квантования, но сохраним полезный сигнал, улучшая таким способом эффективное число разрядов (ENOB). Таким образом, мы выполняем аналого-цифровое преобразование с высоким разрешением, используя аналого-цифровой преобразователь с низкой разрешающей способностью. Коэффициент K здесь упоминается, как коэффициент избыточной дискретизации. При этом необходимо отметить, что избыточная дискретизация дополнительно выгодна еще и тем, что она понижает требования к аналоговому ФНЧ.
Рис. 12.20. Избыточная дискретизация, цифровая фильтрация, формирование шума и прореживание
Так как ширина полосы пропускания уменьшена выходным цифровым фильтром, скорость выдачи выходных данных может быть ниже, чем первоначальная частота дискретизации (Kfs), и при этом все же удовлетворять критерию Найквиста. Это достигается посредством передачи на выход каждого М-го результата и отбрасывания остальных результатов. Такой процесс называют децимацией с коэффициентом М. Несмотря на происхождение термина (decem по-латыни — десять), М может принимать любое целое значение, при условии, что частота выходных данных больше, чем удвоенная ширина полосы сигнала. Прореживание не вызывает никакой потери информации (см. рис.12.20б).
Если мы используем избыточную дискретизацию только для улучшения разрешающей способности, необходимо применять коэффициент избыточности 22N, чтобы получить N-разрядное увеличение разрешающей способности. SD преобразователь не нуждается в таком высоком коэффициенте избыточной дискретизации. Он не только ограничивает полосу пропускания сигнала, но также задает форму кривой распределения шума квантования таким образом, что большая ее часть выходит за пределы этой полосы пропускания, как это показано на рис.12.20в.
Если взять одноразрядный АЦП (известный как компаратор), подать на его вход сигнал от интегратора, а на интегратор — входной сигнал, суммированный с выходом этого ЦАП, на вход которого сигнал поступает с выхода АЦП, получится DS-модулятор первого порядка, показанный на рис.12.21. Добавив цифровой низкочастотный фильтр и дециматор на цифровой выход, получим DS АЦП: DS-модулятор формирует такую кривую распределения шума квантования, при которой большая часть шума располагается выше полосы пропускания цифрового выходного фильтра и, следовательно, эффективное число разрядов (ENOB) намного больше, чем ожидается от коэффициента избыточной дискретизации.
Рис. 12.21. SD АЦП первого порядка
Не вдаваясь в детали, работу SD АЦП можно описать следующим образом. Представим, что постоянное напряжение подается на вход Vin. Сигнал на выходе интегратора в точке А при этом постоянно нарастает или убывает. С выхода компаратора сигнал подается обратно через одноразрядный ЦАП на суммирующий вход в точке B. Благодаря отрицательной обратной связи, соединяющей выход компаратора через одноразрядный ЦАП с точкой суммирования, среднее значение постоянного напряжения в точке B стабилизируется на уровне Vin. Вследствие этого, среднее выходное напряжение ЦАП равняется входному напряжению Vin. В свою очередь, среднее выходное напряжение ЦАП определяется плотностью потока единиц в одноразрядном потоке данных, следующего с выхода компаратора. Когда значение входного сигнала увеличивается до +Vref, число единиц в последовательном потоке данных увеличивается, а число нулей уменьшается. Точно так же, когда значение сигнала приближается к отрицательному значению - Vref, число единиц в последовательном потоке данных уменьшается, а число нулей увеличивается. Попросту говоря, в последовательном потоке разрядов на выходе компаратора содержится среднее значение входного напряжения. Цифровой фильтр и дециматор обрабатывают последовательный поток битов и выдают окончательные выходные данные.
Сравнение сигма-дельта АЦП с АЦП многотактного интегрирования показывает значительные преимущества первых. Прежде всего, линейность характеристики преобразования сигма-дельта АЦП выше, чем у АЦП многотактного интегрирования равной стоимости. Это объясняется тем, что интегратор сигма-дельта АЦП работает в значительно более узком динамическом диапазоне, и нелинейность переходной характеристики усилителя, на котором построен интегратор, сказывается значительно меньше. Емкость конденсатора интегратора сигма-дельта АЦП значительно меньше (десятки пикофарад), так что этот конденсатор может быть изготовлен прямо на кристалле ИМС. Как следствие, сигма-дельта АЦП практически не имеет внешних элементов, что существенно сокращает площадь, занимаемую им на плате, и снижает уровень шумов. В результате, например, 24-разрядный сигма-дельта АЦП AD7714 изготавливается в виде однокристалльной ИМС в 24-выводном корпусе, потребляет 3 мВт мощности и стоит примерно 14 долларов США, а 18-разрядный АЦП восьмитактного интегрирования HI-7159 потребляет 75 мВт и стоит около 30 долларов. К тому же сигма-дельта АЦП начинает давать правильный результат через 3-4 отсчета после скачкообразного изменения входного сигнала, что при величине первой частоты режекции, равной 50 Гц, и 20-разрядном разрешении составляет 60-80 мс, а минимальное время преобразования АЦП HI-7159 для 18-разрядного разрешения и той же частоты режекции составляет 140 мс. В настоящее время ряд ведущих по аналого-цифровым ИМС фирм, такие как Analog Devices и Burr-Brown, прекратили производство АЦП многотактного интегрирования, полностью перейдя в области АЦ-преобразования высокого разрешения на сигма-дельта АЦП.