русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ


Дата добавления: 2014-11-27; просмотров: 596; Нарушение авторских прав


Результат выполнения программы приведен на рис 1.

рис 1. АЧХ и ФЧХ фильтра второго порядка.

Группа функций freqs в общем выполняет расчет частотной характеристики по передаточной функции аналогового фильтра (преобразованию Лапласа импульсной характеристики), заданной векторами числителя и знаменателя:

(2)

Функция h=freqs(b,a,w)вычисляет значения частотной характеристики аналогового фильтра по отсчетам частоты, выраженным в радианах в секунду, которые задаются в векторе w.

Функция [h,w]=freqs(b,a) автоматически выбирает 200 частотных отсчетов, для которых вычисляется частотная характеристика. Число отсчетов может быть задано параметром n. В этом случае используется функция[h,w]=freqs(b,a,n).

Выполним вычисление и вывод частотной характеристики с передаточной функцией

Программа расчета может быть построена следующим образом:

%a_filtr2

a=[1 0.4 1];

b=[0.2 0.3 1];

w=logspace(-1,1);

freqs(b,a,w)

Результаты вычислений приведены на рис 2.

рис 2.

Входной процесс x(t) может быть представлен совокупностью дискретных отсчетов выбранных в моменты времени с одинаковым шагом (дискретом) Ts. Время принимает только дискретные значения t= k Ts. В этом случае входной процесс может быть представлен вектором значений x(k), где k –номер измерения с начала процесса. (t= k Ts).

В этом случае исходное дифференциальное уравнение может быть выражено через конечные разности переменных х и у. Конечно разностным эквивалентом производной является величина:

,

а второй производной , отношение

 

При этом дискретным аналогом дифференциального уравнения (1) будет разностное уравнение:

 

Применяя к полученному уравнению Z-преобразование, получим:

, (4)

где:

(5)

Дискретная передаточная функция фильтра определяется из уравнения (4):



(6)

 

Таким образом цифровым аналогом колебательного звена является цифровой фильтр с коэффициентами числителя и знаменателя, рассчитанными по формулам (4) и (5).

Чтобы получить частотную характеристику по дискретной передаточной, функции , заданной векторами значений ее числителя и знаменателя , используется процедура freqz, аналогичная freqs.

Фильтрация сигнала в пакете MATLAB с помощь линейного фильтра, описываемого передаточной функцией вида:

(7)

 

осуществляется процедурой filter следующим образом:

y=filter (b,a,x)

где х – заданный вектор значений входного сигнала; у- вектор значений выходного сигнала фильтра после процедуры фильтрации; b-вектор коэффициентов числителя дискретной передаточной функции (7) линейного фильтра; а-вектор коэффициентов знаменателя передаточной функции.

Рассмотрим пример задачи фильтрации. Пусть имеется сигнал синусоидальной формы с периодом Т1=1 (с) и амплитудой А1=0.75. Сформируем этот сигнал в виде вектора с периодом Т1=1 и амплитудой А1=0.75. Вектор значений сигнала определен в дискретные моменты времени с шагом Ts=0.001:

 

 

Пусть в процессе обработки сигнала (первичным преобразователем) к полезному сигналу добавился шум, представляющий собой высокочастотную синусоиду с периодом и амплитудой , а в процессе измерения – гауссовый шум измерителя с интенсивностью . Измеренный сигнал после измерения будет иметь вил:

График сигнала после измерения приобретет вид:

Рис 3.

Задачей обработки измерений является возможно более полное восстановление полезного сигнала на фоне аддитивных добавок помех и шумов. Поскольку частота полезного сигнала известна, задача может быть решена посредством линейной фильтрации. Вследствие монохроматичности полезного сигнала в качестве линейного фильтра можно применить резонансный фильтр. Резонансная частота такого фильтра должна быть обратно пропорциональна периоду колебаний полезного сигнала, а для восстановления амплитуды полезного сигнала амплитуда входного сигнала фильтра домножается на постоянную величину , поскольку при резонансе изменение амплитуды сигнала по сравнению с входным сигналом пропорционально этой же величине. Программа фильтра имеет вид

В результате получим восстановленный процесс, рис 4. Для сравнения на рис 4 показан исходный сигнал. Созданный фильтр достаточно хорошо восстанавливает полезный сигнал.

 

Рис.4

 

Более точному восстановлению препятствуют 2 обстоятельства:

1. восстановленный процесс устанавливается с запозданием вследствие нулевых начальных условий самого фильтра, как динамического звена, рис 5.

 

 

рис 5.

2. в установившемся режиме наблюдается значительный сдвиг фаз, между входным и восстанавливаемым процессами, т.к при резонансе сдвиг фаз достигает именно такой величины.

Для исключения фазовых искажений можно воспользоваться процедурой filtfilt.Процедура filtfilt осуществляет обработку входного вектора в два приема: сначала в прямом, а затем в обратном направлении.

 

 

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ



<== предыдущая лекция | следующая лекция ==>
freqs(b,a1) | МЕТОДИЧЕСКИЕ УКАЗАНИЯ


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.