Операторный метод, базирующийся на преобразовании Лапласа, является одним из основных направлений в исследовании линейных систем. Преобразование Лапласа (.1) позволяет осуществить перевод оригинала из области непрерывного времени t в его комплексное изображение E(s) в s-области.
, (.1)
В области дискретного времени преобразование Лапласа последовательности принимает вид суммы:
(.2)
Трансцендентность изображений дискретных .последовательностей из-за наличия экспоненты в ( .2) приводит к определенным трудностям, поэтому применительно к дискретным и цифровым устройствам пользуются не дискретным преобразованием Лапласа, а -преобразованием, которое получается из (:2) заменой :
(.3)
Свойства -преобразования.
Линейность. Если и являются -преобразованиями последовательностей и , то любых действительных а и b z-преобразование равно Это непосредственно вытекает из (.3) и является подтверждением принципа суперпозиции из определения.
Задержка. Если - преобразование относится к последовательности , то -преобразование последовательности ,задержанной на тактов, равно . При определении -преобразования ординаты в соответствии с (.3) умножаются на комплексные числа последовательности и результаты умножения суммируются.
Очевидно, что -преобразование будет точно таким же, если оперировать несмещенной последовательностью и последовательностью смещенной на т тактов в сторону опережения.
Формульная запись при этой операции имеет вид:
(.4)
Из (.4) следует, в частности, что в выражениях z-форм множитель z±mдолжен рассматриваться как оператор сдвига преобразуемой последовательности на т тактов дискретизации. Знак показателя определяет направление сдвига (минус - задержка, плюс - опережение).
Свертка. Если последовательности соответствует -преобразование , а последовательности -преобразование , то дискретной свертке этих последовательностей: