русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Применение вейвлет-преобразований для сжатия изображения


Дата добавления: 2014-11-27; просмотров: 1765; Нарушение авторских прав


 

Вейвлет-кодер изображения устроен так же, как и любой другой кодер с преобразованием. Он состоит из трех основных частей: декоррелирующее преобразование, процедура квантования и энтропийное кодирование. В настоящее время во всем мире проводятся исследования по усовершенствованию всех трех компонент базового кодера [3].

Выбор оптимального базиса вейвлетов для кодирования изображения является трудной и вряд ли решаемой задачей. Известен ряд критериев построения «хороших» вейвлетов, среди которых наиболее важными являются: гладкость, точность аппроксимации, величина области определения, частотная избирательность фильтра. Тем не менее, наилучшая комбинация этих свойств неизвестна [37,44,62,69,70,81].

Для выбора наилучшего (по соотношению вычислительная сложность метода / размер сжатых данных после вторичного сжатия) вейвлет преобразования был проведён следующий эксперимент. К одному и тому же изображению типа портрет («Lena») , были применены следующие одноуровневые вейвлет преобразования: преобразование Хаара, преобразование 1.3., преобразование 2.6. и преобразование 5.3. .

На каждом шаге преобразования выполняется два разбиения по частоте, а не одно. Предположим, имеем изображение размером . Сначала каждая из строк изображения делится на низкочастотную и высокочастотную половины. Получается два изображения размерами . Далее, каждый столбец делится аналогичным образом. В результате получается четыре изображения размерами : низкочастотное по горизонтали и вертикали, высокочастотное по горизонтали и вертикали, низкочастотное по горизонтали и высокочастотное по вертикали и высокочастотное по горизонтали и низкочастотное по вертикали. Первое из вышеназванных изображений делится аналогичным образом на следующем шаге преобразования, как показано на рис.7.4.

 



 



 



Рис.7.4. Два уровня вейвлет-преобразования изображения

 



В результирующий файл записывались коэффициенты всех субполос, кроме диагональных, поскольку именно диагональные субполосы содержат шумовые составляющие изображения. Полученные файлы сжимались вторичным методом сжатия (алгоритм ZIP сжатия). Результаты эксперимента приведены в таблице 7.1.

Таблица 7.1.

Выбор наилучшего целочисленного вейвлет преобразования

Метод вейвлет преобразования Размер файла с частотными коэффициентами (kb) Размер файла после вторичного сжатия (kb) Коэф-нт. корреляции между ориг. и восст-ым изобр.
Преобразование Хаара 0.9990
Преобразование 2.2 0.9991
Преобразование 1.3 0.9988
Преобразование 2.6 0.9991
Преобразование 5.3 0.9992

 

На рисунке 2.5. приведены разностные изображения для преобразований Хаара, преобразования 2.2 и преобразования 5.3.

а) б)

в)

Рис. 7.5. Разностные изображения для преобразований Хаара (а), 2.2.(б) и 5.3(в)

Данные преобразования вносят меньше потерь при исключении диагональной субполосы и образуют хорошо «пакуемые» частотные коэффициенты.

Таким образом, метод Хаара обладает наименьшей вычислительной сложностью и получает хорошо «пакуемые» частотные коэффициенты. Именно этот метод вейвлет преобразования используется во всех разработанных методах сжатия изображений.

Следующим этапом в алгоритмах сжатия изображений является этап квантования частотных коэффициентов. В большинстве вейвлет-кодеров применяется скалярное квантование. Существуют две основные стратегии выполнения скалярного квантования. Если заранее известно распределение коэффициентов в каждой полосе, оптимальным будет использование квантователей Ллойда-Макса с ограниченной энтропией для каждой субполосы. В общем случае подобным знанием мы не обладаем, но можем передать параметрическое описание коэффициентов путем посылки декодеру дополнительных бит. Априорно известно, что коэффициенты высокочастотных полос имеют обобщенное гауссовское распределение с нулевым матожиданием.

На практике обычно применяется намного более простой равномерный квантователь с «мертвой» зоной. Как показано на рис. 7.6, интервалы квантования имеют размер , кроме центрального интервала (возле нуля), чей размер обычно выбирается .

Коэффициенту, попавшему в некоторый интервал, ставится в соответствие значение центроида этого интервала. В случае асимптотически высоких скоростей кодирования равномерное квантование является оптимальным. Хотя в практических режимах работы квантователи с «мертвой» зоной субоптимальны, они работают почти так же хорошо, как квантователи Ллойда-Макса, будучи намного проще в исполнении. Кроме того, они устойчивы к изменениям распределения коэффициентов в субполосе. Дополнительным их преимуществом является то, что они могут быть вложены друг в друга для получения вложенного битового потока.

 



 



Рис. 7.6. Равномерный квантователь с «мертвой» зоной

 



В заключении необходимо отметить о возможность применения вейвлет преобразований к цветным изображениям. Обычно, цветные изображения представлены в RGB системе цветопредставления.

Вейвлет преобразования Хаара можно применять непосредственно к отдельным составляющим RGB изображения, но можно, как и в алгоритме JPEG, использовать YCrCb цветопредставление. В данном случае составляющие Cr и Cb могут непосредственно подвергаться вейвлет преобразованию, а могут, с целью сокращения информационной избыточности, предварительно быть прорежены, т.е. от исходных Cr и Cb сохраняются значения через строчку и через столбец.

Эксперименты показывают, что при использовании преобразования Хаара для RGB плоскостей и для YCrCb составляющих, восстановленные изображения практически идентичны.

Вейвлет преобразования обладают многими полезными свойствами, применимыми как при обработке, так и при сжатии изображений.

Для сжатия изображений наиболее полезными являются следующие свойства:

· возможность целочисленного обратимого преобразования,

· частотные коэффициенты преобразования обладают той же точностью, что и отчёты изображения.

· вейвлет коэффициенты одновременно локализованы как в пространственной, так и в частотной областях,

· вейвлет коэффициенты сдвинуты и распространены по вложенным масштабированным подуровням,

· если данный вейвлет коэффициент большой либо маленький, то смежный с ним вейвлет коэффициент также либо большой, либо маленький,

· масштаб значений вейвлет коэффициентов сохраняется от уровня к уровню.

Исследования показывают, что наилучшим преобразованием по соотношению вычислительная сложность метода /размер сжатых данных после вторичного сжатия является преобразование Хаара. Данное преобразование применимо не только для изображений в градациях серого, но и к цветным изображениям. Для цветных изображений данное преобразование можно применять как к RGB плоскостям, так и к другим производным цветопредставления, например, YCrCb.

Актуальными при сжатии изображений на основе вейвлет преобразования являются задачи:

· оптимального обхода плоскости вейвлет коэффициентов,

· поиска наилучшего метода вторичного сжатия вейвлет коэффициентов,

· поиска метода оптимального кодирования значимых вейвлет коэффициентов,

· совмещения алгоритмов сжатия с алгоритмами защиты авторских прав на изображения.




<== предыдущая лекция | следующая лекция ==>
Целочисленное вейвлет-преобразование | Вычислительная сложность ДПФ и способы её сокращения


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.