русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Реверсивный счетчик


Дата добавления: 2014-11-27; просмотров: 9926; Нарушение авторских прав


Описанные выше счетчики однонаправленные и считают на увеличение, однако на практике часто необходимо менять направление счета в процессе работы. Счетчики, которые в процессе работы могут менять направление счета называются реверсивными.

 

Рис. 3 - Реверсивный счетчик

Для счетных импульсов предусмотрены два входа: "+1" - на увеличение, "-1" - на уменьшение. Соотстветствующий вход (+1 или -1) подключается ко входу С. Это можно сделать схемой ИЛИ, если влепить ее перед первым триггером (выход элемента ко входу первого триггера, входы - к шинам +1 и -1). Непонятная фигня между триггерами (DD2 и DD4) называется элементом И-ИЛИ. Этот элемент составлен из двух элементов И и одного элемента ИЛИ, объединенных в одном корпусе. Сначала входные сигналы на этом элементе логически перемножаются, потом результат логически складывается.

Число входов элемента И-ИЛИ соответствует номеру разряда, т. е. если третий разряд, то три входа, четвертый - четыре и т. д. Логическая схема является двухпозиционным переключателем, управляемым прямым или инверсным выходом предыдущего триггера. При лог. 1 на прямом выходе счетчик отсчитывает импульсы с шины "+1" (если они, конечно, поступает), при лог. 1 на инверсном выходе - с шины "-1". Элементы И (DD6.1 и DD6.2) формируют сигналы переноса. На выходе >7 сигнал формируется при коде 111 (число 7) и наличии тактового импульса на шине +1, на выходе <0 сигнал формируется при коде 000 и наличии тактового импульса на шине -1.

Все это, конечно, интересно, но красивей смотрится в микросхемном исполнении:

 

Рис. 4 Четырехразрядный двоичный счетчик

Вот типичный счетчик с предустановкой. СТ2 означает, что счетчик двоичный, если он десятичный, то ставится СТ10, если двоично-десятичный - СТ2/10. Входы D0 - D3 называются информационными входами и служат для записи в счетчик какого-либо двоичного состояния. Это состояние отобразится на его выходах и от него будет производится начало отсчета. Другими словами, это входы предварительной установки или просто предустановки. Вход V служит для разрешения записи кода по входам D0 - D3, или, как говорят, разрешения предустановки. Этот вход может обозначаться и другими буквами. Предварительная запись в счетчик производится при подаче сигнала разрешения записи в момент прихода импульса на вход С. Вход С тактовый. Сюда запихивают импульсы. Треугольник означает, что счетчик срабатывает по спаду импульса. Если треугольник повернут на 180 градусов, т. е. задницей к букве С, значит он срабатывает по фронту импульса. Вход R служит для обнуления счетчика, т. е. при подаче импульса на этот вход на всех выходах счетчика устанавливаются лог. 0. Вход PI называется входом переноса. Выход p называется выходом переноса. На этом выходе формируется сигнал при переполнении счетчика (когда на всех выходах устанавливаются лог. 1). Этот сигнал можно подать на вход переноса следующего счетчика. Тогда при переполнении первого счетчика второй будет переключаться в следующее состояние. Выходы 1, 2, 4, 8 просто выходы. На них формируется двоичный код, соответствующий числу поступивших на вход счетчика импульсов. Если выводы с кружочками, что бывает намного чаще, значит они инверсные, т. е. вместо лог. 1 подается лог. 0 и наоборот. Более подробно работа счетчиков совместно с другими устройствами будет рассматриваться в дальнейшем.



Мультиплексор - это устройство, которое осуществляет выборку одного из нескольких входов и подключает его к своему выходу, в зависимости от состояния двоичного кода. Другими словами, мультиплексор - переключатель сигналов, управляемый двоичным кодом и имеющий несколько входов и один выход. К выходу подключается тот вход, чей номер соответствует двоичному коду. Ну и навороченное определение: мультиплексор - это устройство, преобразующее параллельный код в последовательный.

Структуру мультиплексора можно представить различными схемами, но более понятна, на мой взгляд, вот эта:

 

Рис. 1 - Структура мультиплексора

Самая большая хренотень есть не что иное, как элемент И-ИЛИ. Конкретно здесь элемент 4-х входовый. Ну а квадратики с единичками внутри, если кто не помнит, инверторы. Разберем выводы. Те, что слева, а именно D0-D3, называются информационными входами. На них чего-нибудь подают. Входы посередке, а именно А0-А1, называются адресными входами. Вот сюда именно и подается двоичный код, от которого зависит, какой из входов D0-D3 будет подключен к выходу, на этой схеме обозначенному как Y. Вход С, черт его знает, нафига он здесь. Вроде бы как разрешение работы, а может просто для понта. Ну его в баню. На схеме еще есть входы адреса с инверсией. Так вот они тоже показаны здесь для понта. На этом рисунке показан четырехвходовой, или как еще его называют, 4Х1 мультиплексор. Потому и адресных входов всего 2. Как нам известно, максимальное число переменных определяется как 2n, где n - разряд кода. Здесь мы видим, что переменных четыре штуки, а значит разряд будет равен 2 (22 = 4). Для пояснения принципа работы этой схемы посмотрим на табличку истинности:

A1 A0 Y
D0
D1
D2
D3

Вот так двоичный код выбирает нужный вход. Т. е., если имеем четыре объекта, ну, скажем, они пуляют сигналы, а устройство отображения у нас одно. Берем мультик (мультиплексор) и втуляем его в схему. В зависимости от двоичного кода к устройству отображения подключается сигнал от нужного объекта. Такой вот, дохленький пример.

Микросхемой мультик обозначается вот так:

 

Рис. 2 - Мультиплексор

Вообще, мультиплексоров всяких дофига. Есть и сдвоенные четырехвходовые, восьмивходовые, 16-ти входовые, счетверенные двухвходовые и пр. Тот, что на рисунке сделан от фонаря.

Демультиплексор. Демультиплексор - устройство, обратное мультиплексору. Т. е., у демультиплексора один вход и куча выходов. Двоичный код определяет, какой выход будет подключен ко входу. Другими словами, демультиплексор - это устройство, которое осуществляет выборку одного из нескольких выходов и подключает его к своему входу или, это переключатель сигналов, управляемый двоичным кодом и имеющий один вход и несколько выходов. Ко входу подключается тот выход, чей номер соответствует состоянию двоичного кода. И навороченное определение: демультиплексор - это устройство, которое преобразует последовательный код в параллельный.

Обычно в качестве демультиплексора используют дешифраторы двоичного кода в позиционный, в которых вводят дополнительный вход стробирования. Из-за схожести структур мультиплексора и демультиплексора в КМОП сериях есть микросхемы, которые одновременно являются мультиплексорром и демультиплексором, смотря с какой стороны подавать сигналы, например, К561КП1, работающая как переключатель 8х1 и переключатель 1х8 (то бишь, как мультиплексор и демультиплексор с восемью входами или выходами). Кроме того, в КМОП микросхемах помимо переключения цифровых сигналов (лог. 0 или 1) существует возможность переключения аналоговых. Другими словами, это переключатель аналоговых сигналов, управляемый цифровым кодом. Такие микросхемы называются коммутаторами. К примеру, с помощью коммутатора можно переключать сигналы, поступающие на вход усилителя (селектор входов). Вот напоследок простенькую схемку селектора входов УМЗЧ мы и рассмотрим. Построим ее, ну скажем, с использованием триггеров и мультиплексора.

 

Рис. 3 - Селектор входных сигналов

Вот такая нехитрая схемка. Итак, разберем работу и деталюшки. На триггерах микросхемы DD1 собран кольцевой счетчик нажатий кнопки разрядностью 2 (два триггера - 2 разряда). Двухразрядный двоичный код поступает на адресные входы D0-D1 микросхемы DD2. Микросхема DD2 представляет собой сдвоенный четырехканальный коммутатор. В соответствии с двоичным кодом к выходам микросхемы А и В подключаются входы А0-А3 и В0-В3 соответственно. Элементы R1, R2, C1 устраняют дребезг контактов кнопки. Дифференцирующая цепь R3C2 устанавливает триггеры в нулевое состояние при включении питания, при этом к выходу подключается первый вход. При нажати на кнопку триггер DD1.1 переключается в состояние лог. 1 и к выходу подключается второй вход и т. д. Перебор входов идет по кольцу, начиная с первого.

С одной стороны просто, с другой немного неудобно. Черт его знает, сколько раз нажали на кнопку после включения и какой вход подключен к выходу. Хорошо бы поставить индикатор подключенного входа. Вот тут-то и пригодится семисегментный дешифратор. Нажимаем ссылочку, вспоминаем семисегментный дешифратор и смотрим на схемку (там, где циферки бегут). Берем дешифратор и индикатор, обрубаем счетчик и другую галиматью, переносим дешифратор с индикатором на схему коммутатора и первые два входа дешифратора (на схеме обозначен как DD3), т. е. 1 и 2 (выв. 7 и 1) подключаем к прямым выходам триггеров DD1.1 DD1.2 (выв. 1 и 13). Входы дешифратора 4 и 8 (выв. 2 и 6) кидаем на корпус (т. е. подаем лог. 0). Все! Индикатор будет показывать состояние кольцевого счетчика, а именно циферки от 0 до 3. Цифиря 0 соответствует первому входу, 1 - 2-му и т. д.

Регистр (от буржуйского to register - регистрировать) - это цифровой узел, предназначенный для записи и хранения числа. Некоторые регистры могут преобразовывать информацию из последовательной формы в параллельную и наоборот. Для начала рассмотрим регистр хранения.



<== предыдущая лекция | следующая лекция ==>
Счетчики с параллельным переносом | Регистр хранения


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.