русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Карты Карно


Дата добавления: 2014-11-27; просмотров: 2200; Нарушение авторских прав


Основной целью логических преобразований является получение компактного логического выражения (минимизация). Минимизацию производят объединением соседних наборов (термов). Объединяемые наборы должны иметь одинаковые значения функции (все 0 или все 1). Если число логических переменных не превышает 5, преобразования логических функций удобно производить с помощью карт Карно.

Для наглядности рассмотрим пример: пусть требуется найти логическое выражение для мажоритарной функции fm трех переменных x, у, z, описываемой таблицей истинности, показанной в табл. 2.

Функция fm строится по принципу голосования “два из трех”, т.е. принимает то значение, которое имеют большинство переменных.

Составим карту Карно функции fm (табл. 3). В карте столбцам и строкам соответствуют наборы переменных (или одна из переменных), причем переменные располагаются в таком порядке, чтобы при переходе к соседнему столбцу или строке изменялось значение только одной переменной. Например, в строке xy табл. 3 значения переменных xy могут быть представлены следующими последовательностями 00, 01, 11, 10 или 00, 10, 11, 01. Внутри таблицу заполняют значениями функции, соответствующими комбинациям значений переменных.

На карте Карно отмечаем группы, состоящие из 2k соседних клеток (2, 4, 8,…) и содержащие 1. В результате объединения (склеивания) таких ячеек в записи функции получаются более простые логические выражения. Три овала в таблице определяют логические выражения xy, xz, yz, полученные путем применения следующих операций склеивания:

 

Таблица 2

x y z fm

 



Окончательное выражение, описывающее функцию, представляет собой дизъюнкцию полученных при помощи карты конъюнкций. В итоге получаем выражение в дизъюнктивной нормальной форме (ДНФ)

fm = xy v xz v yz .

 

Таблица 3

yz x

xz yz xy

 

Самая короткая по числу букв ДНФ будет представлять собой минимальную дизъюнктивную нормальную форму (МДНФ).

Если объединять 0, то получим запись в конъюнктивной нормальной форме (КНФ)

fm = (x v y)( x v z)(y v z).

Обратим внимание на то, что полученные записи функции fm в ДНФ или КНФ являются более компактными, чем ее представления в СДНФ или СКНФ.



<== предыдущая лекция | следующая лекция ==>
Аналитическое представление логических функций | Частично определенные логические функции


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.