русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Принципы АЦП. Дискретизация по времени.


Дата добавления: 2014-11-27; просмотров: 1180; Нарушение авторских прав


Сущность дискретизации аналоговых сигналов заключается в том, что непрерывность во времени аналоговой функции s(t) заменяется последовательностью коротких импульсов, амплитудные значения которых cn определяются с помощью весовых функций, либо непосредственно выборками (отсчетами) мгновенных значений сигнала s(t) в моменты времени tn.Представление сигнала s(t) на интервале Т совокупностью дискретных значений cn записывается в виде:

(с1, с2, ... , cN) = А[s(t)],

где А - оператор дискретизации. Запись операции восстановления сигнала s(t):

s'(t) = В[(с1, с2, ... , cN)].

Выбор операторов А и В определяется требуемой точностью восстановления сигнала. Наиболее простыми являются линейные операторы. В общем случае:

сn = qn(t) s(t) dt, (2.1)

где qn(t) - система весовых функций.

Отсчеты в выражении (2.1) связаны с операцией интегрирования, что обеспечивает высокую помехоустойчивость дискретизации. Однако в силу сложности технической реализации "взвешенного" интегрирования, последнее используется достаточно редко, при высоких уровнях помех. Более широкое распространение получили методы, при которых сигнал s(t) заменяется совокупностью его мгновенных значений s(tn) в моменты времени tn. Роль весовых функций в этом случае выполняют гребневые (решетчатые) функции. Отрезок времени t между соседними отсчетами называют шагом дискретизации. Дискретизация называется равномерной с частотой F=1/t, если значение t постоянно по всему диапазону преобразования сигнала. При неравномерной дискретизации значение t между выборками может изменяться по определенной программе или в зависимости от изменения каких-либо параметров сигнала.

Допустим, что для обработки задается произвольный аналоговый сигнал s(t), имеющий конечный и достаточно компактный фурье-образ S(f). Равномерная дискретизация непрерывного сигнала s(t) с частотой F (шаг t = 1/F) с математических позиций означает умножение функции s(t) на гребневую функцию Шt(t) = (t-kt) – непрерывную последовательность импульсов Кронекера:



st(t) = s(t)×Шt(t) = s(t) (t-kt) = s(kt)(t-kt). (3.1)

С учетом известного преобразования Фурье гребневой функции

Шt(t)  (1/T) (f-nF) = F·ШF(f), (3.2)

фурье-образ дискретной функции st(t):

SF(f) = S(f) * F×ШF(f). (3.3)

Отсюда, для спектра дискретного сигнала имеем:

SF(f) = F×S(f) * (f-nF) = F S(f-nF). (3.4)

Из выражения следует, что спектр дискретного сигнала представляет собой непрерывную периодическую функцию с периодом F, совпадающую (при определенных условиях конечности спектра непрерывного сигнала) с функцией F×S(f) непрерывного сигнала s(t) в пределах центрального периода от -fN до fN, где fN = 1/2t = F/2. Частоту fN (или для круговой частоты N = /t) называют частотой Найквиста. Центральный период функции SF(f) называют главным частотным диапазоном.

Интуитивно понятно, что если спектр главного частотного диапазона с точностью до постоянного множителя совпадает со спектром непрерывного сигнала, то по этому спектру может быть восстановлена не только форма дискретного сигнала, но и форма исходного непрерывного сигнала. При этом шаг дискретизации и соответствующее ему значение частоты Найквиста должны иметь определяющее значение.



<== предыдущая лекция | следующая лекция ==>
Дельта-сигма АЦП. | Принципы АЦП. Квантование по уровню.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.159 сек.