На входы компаратора поступает напряжение Uвх, которое нужно преобразовать в код и напряжение от генератора линейно нарастающего напряжения Uлин. Пока Uлин < Uвх, К = 1 – идет счет импульсов. В момент времени t = t0, когда Uлин = Uвх, К = 0 – счет прекращается. Результат счета пропорционален Uвх. ГЛИН обычно строится на основе ОУ (рис.11-5). Счётчик считает импульсы ГТИ (рис.11-6) в интервале времени 0 – t0. Количество импульсов пропорционально Uвх.
Недостаток: на точность преобразования очень сильно влияет нелинейность ГЛИН.
Рис.11-6 ГЛИН-интегратор на ОУ
11.5.2 Метод двойного интегрирования
Рис.11-7 Диаграмма работы АЦП двойного интегрирования
На вход АЦП подается преобразуемое напряжение, и интегрирование производится всегда в течении одинаковых интервалов времени 0 - t1. В момент t1 ко входу интегратора прикладывается всегда одинаковое напряжение обратного знака -Uопорное. Происходит "разинтегрирование" до момента времени t2 (или t3), когда напряжение на выходе интегратора станет равным 0.
Тогда интервал времени t2 – t1 (или t3 – t1) отображает во временном масштабе Uвх. Если в течении этого интервала считать импульсы от генератора, то количество импульсов пропорционально Uвх, то есть напряжение превращено в код.
Достоинства: тактовая частота и постоянная времени ГЛИН не влияют на точность. Важно лишь, чтобы ƒТ = const в интервале времени 0 - t. Достижимая погрешность d = 0,01%.
Пример интегрирующего АЦП микросхема КР572ПВ2:
tинт = 103Т, ƒТ = 10 - 50 кГц, tинт = от 0,02с до 0,1с.
Если ƒТ = ƒпомех/n, то АЦП нечувствителен к этой помехе. Цепь интегрирования в интеграторе – навесная: С = 0,1мкФ, R1 = 47кОм (Uвх = ±0,2B), если R1 = 470кОм (Uвх = ±2В).
Линейность напряжения интегратора очень зависит от качества конденсатора С. Если применен керамический конденсатор, то d = 0,1%; полистироловый – 0,01%; полипропиленовый – 0,001%.