русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Постоянный шаг аргумента


Дата добавления: 2014-10-13; просмотров: 671; Нарушение авторских прав


Для заданных табулированных функций, когда аргументы представляются арифметической прогрессией (шаг аргумента постоянен), существуют легко реализуемые в таблицах Excel расчетные формулы численного интегрирования и дифференцирования, основанные на использовании разностных подходов.

Для численного дифференцирования используют прямые разности на шаге ΔX (вариант 1) или центральные разности на двух шагах ΔX (вариант 2):

 

вариант 1 - ;

вариант 2 - . (1.28)

 

Наиболее просто численное интегрирование проводится методом трапеций. На интервале равном шагу интегрирования:

(1.29)

 

Интеграл на интервале [X 1, X n] определяется как:

(1.30)

При численном интегрировании более точным считается метод Симпсона. В этом случае на интервале [X i-1, X i+1] (два смежных шага ΔX) функция описывается полиномом второго порядка, а интеграл определяется по зависимости:

(1.31)

Интеграл на интервале [X 1, X n] определяется как сумма интегралов на отдельных интервалах [X i-1, X i+1] расположенных с шагом 2ΔX:

(1.32)

где nнечетное число.

 



<== предыдущая лекция | следующая лекция ==>
Ковариационный и корреляционный анализ | Переменный шаг аргумента


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.003 сек.