Одним из главных элементов электрической цепи является приемник электрической энергии.
Электроприемники служат для преобразования электрической энергии в другие виды энергии: механическую (электродвигатели, электромагниты), тепловую (нагревательные приборы, сварочные аппараты, промышленные печи), световую (лампы электроосвещения), химическую (электролитические ванны) и т.д.
Эти энергетические преобразования (как и любые другие) происходят лишь при условии, что на их пути имеется сопротивление (электрическое сопротивление).
Ранее отмечалось, что ток в электрической цепи создается электрическим полем. Электрическое поле в проводнике при постоянном токе называется стационарным электрическим полем.
Стационарное электрическое поле, как и электростатическое поле, характеризуется напряженностью, потенциалом и разностью потенциалов.
Так как перемещение зарядов по проводнику сопровождается затратой энергии (электроны, сталкиваясь с ионами кристаллической решетки, возбуждая их к тепловому движению, теряют энергию), то в соответствии с положением (6) § 1.1- на концах проводника имеется разность потенциалов, т. е. напряжение или падение напряжения.
Таким образом, падение напряжения является количественной оценкой энергетических преобразований в цепи (1).
На схемах электрических цепей напряжение обозначают стрелкой в направлении от большего потенциала к меньшему.
На схемах принято показывать направление напряжения в ту же сторону, что и направление тока, внутри участка цепи, как на рис. 2.12. Однако следует помнить, что вне участка цепи падение напряжения на нем направлено навстречу току, оказывая ему противодействие (сопротивление). Это видно из рис. 2.5.
Таким образом, ток создает падение напряжения в проводнике, которое оказывает противодействие току.
Сравнивая падения напряжений на участках неразветвленной цепи при одинаковом токе, можно оценить, какой участок оказывает большее сопротивление току.
Падение напряжения на проводнике зависит от тока, поэтому не может быть характеристикой проводника. Способность проводников сопротивляться току оценивается падением напряжения, приходящимся на единицу тока, которое называется электрическим сопротивлением, обозначается R(r) и является параметром проводника:
R = U/I. (2.6)
Электрическое сопротивление проводника (электроприемника) численно равно падению напряжения на нем, созданному током, 1 А и оказывающему противодействие этому току (2).
За единицу сопротивления ом (Ом) принято сопротивление такого проводника, на котором при токе 1А падает напряжение 1В:
1Ом = 1 В/1 А. Применяют также 1 килоом (кОм) = 103 Ом и
1 мегаом (МОм) = 106 Ом.
Рассматривая сопротивление проводника, важно понимать, от каких факторов оно зависит.
Экспериментально установлено, что падение напряжения на проводнике (электроприемнике) прямо пропорционально току (3). Эта закономерность называется законом Ома для участка цепи:
U = IR, I = U/R. (2.7)
Графическим выражением закона Ома является так называемая вольт-амперная характеристика проводника (рис. 2.6).
Из закона Ома следует, что сопротивление не зависит от тока. Однако это справедливо лишь в случае, если не изменяется температура проводника.
Для металлов зависимость сопротивления от температуры выражается формулой
R2=R1 [1+α(t2 –t1)],
где R1 , R2— сопротивления провода при начальной t1и конечной t2 температурах; α — температурный коэффициент сопротивления, 1/°С.
Из физики известно, что
R = pL/S,
где р — удельное сопротивление проводника, Ом·м, L- длина, S – площадь поперечного
сечения.
Величина, обратная сопротивлению, называется электрической проводимостью.
Единица проводимости — сименс (См),
Значения токов, напряжений, мощностей, сопротивлений и проводим остей, находятся во взаимосвязи. Используя формулы (1.4), (2.1), (2.4) и закон Ома, получаем; P = A/t = Uq/t =UIt =U
P =IU=Il R= I 2 R ; (2.10)
P= UI =UU/R =U2/R =U2g (2.11)
В электротехнике и электронике для преднамеренного создания сопротивления электрическому току применяют резисторы (рис. 2.7), которые характеризуются двумя параметрами: номинальным значением сопротивления (с определенным допуском в процентах) и максимальным значением мощности рассеяния. Указанные параметры приводятся на корпусе резистора. Дляразличных целей изготавливают резисторы в огромном диапазоне сопротивлений: oт сотых долей ома до десятков и сотен мегаом.
Для изготовления токоведущих элементов электрических устройств используются проводниковые материалы (в основном металлы и их сплавь). Различают проводниковые материалы с малым удельным сопротивлением, большим удельным сопротивлением и сверхпроводники.
Изматериалов с малым удельным сопротивлением наиболее широкое применение получили медь и алюминий (для изготовления проводов, кабелей, обмоток машин и аппаратов и т.д.). Применяются также сплавы меди (бронза, латунь) и сталь.Из материалов с большим удельным сопротивлением, отметим металлические сплавы: нихром (сплав никеля, хрома, железа) и фехраль (сплав железа, хрома, алюминия), применяемые в электронагревательных приборах, а также манганин (медно-марганцевый сплав) и константан (медно-никелевый сплав) Важным достоинством манганина и константана является то, что их сопротивления практически не зависят от температуры. Это обусловило их применение при изготовлении обмоток измерительных приборов (манганин), образцовых сопротивлений и резисторов (константан),
В электротехнике применяют также угольные материалы (щетки электрических машин), металлокерамику (для контактов выключателей), припои и др.
При глубоком охлаждении некоторых металлов и материалов (ниобия, свинца, ртути, алюминия и др.) до температур, близких к абсолютному нулю (О К или — 273 °С), они переходят в состояние сверхпроводимости, с наступлением которого их сопротивление скачком уменьшается до нуля. Температура, при которой материал переходит в сверхпроводящее состояние, называется критической. Например, для алюминия критическая температура 1,2 К.
В настоящее время найдены материалы (сплавы и химические соединения), критическая температура которых выше 100 К. Их можно использовать в электронике, в частности в электронно-вычислительных машинах (ЭВМ), что позволит уменьшить габариты и стоимость ЭВМ. Возможно, в ближайшем будущем будут созданы сверхпроводники, критическая температура которых будет близкой к температуре окружающей среды.
Перспективными проводниками являются электропроводящие пластики. Обычно пластик является электроизоляционным материалом. Однако ученые нашли такие сорта пластиков, которые при соответствующей обработке меняют свои электрофизические свойства и проводят электрический ток не хуже меди. Изготовленные из такого материала провода значительно дешевле медных и прочнее их.