Качественно новым этапом в развитии цифровых систем передачи является создание синхронной цифровой иерархии - СЦИ (или Synchronous Digital Hierarchy - SDH).
Технология СЦИ определяется как набор цифровых структур, стандартизированных с целью транспортированияопределенных объемов информации, и реализуется как комплексный процесс переноса информации, включая функции контроля и управления. Системы передачи СЦИ рассчитаны на транспортирование цифровых потоков (сигналов) ПЦИ различных стандартов и уровней, а также широкополосных сигналов, связанных с внедрением новых услуг электросвязи.
Как и в ПЦИ, на каждом уровне СЦИ стандартизированы скорости передачи группового сигнала и структуры циклов. МСЭ-Т принял рекомендации по следующим уровням: первый уровеньсо скоростью передачи 155,52 Мбит/с; четвертый уровеньсо скоростью передачи 622,08 Мбит/с; шестнадцатый уровеньсо скоростью передачи 2488,32 Мбит/с. Скорости соответствующих уровней получаются умножением скорости первого уровня на число, соответствующее наименованию уровня.
В качестве основного формата сигнала в СЦИ принят синхронный транспортный модуль- СТМ(или Synchronous Transport Modul -STM), имеющий скорость передачи 155,52 Мбит/с и включающий в себя цифровые потоки европейского и североамериканского стандартов ПЦИ. Синхронный транспортный модуль представляет собой блочную циклическую структуру с периодом повторения 125 мкс. Основной модуль STM-1, модули высших уровней STM-4, STM-16, STM-64 и STM-256 кроме основной информационной нагрузки, несут значительный объем избыточных сигналов, обеспечивающих функции контроля, управления и обслуживания и ряд вспомогательных функций.
Структурная схема временного группообразования или мультиплексирования для STM-N потоков ПЦИ европейского и североамериканского стандартов приведена на рис. 11.
Исходная информационная нагрузка пакуется в контейнеры С(Container) соответствующего уровня, представляющие базовые элементы структуры мультиплексирования SDH, соответствующих уровням ПЦИ. Рассмотрим пример формирования синхронного транспортного модуля N-го уровня.
Четверичный цифровой поток европейского стандарта Е4 со скоростью передачи 140 Мбит/с, что соответствует 2176 байтам на длительности цикла Тц = 125 мкс, путем добавления выравнивающихбайт преобразуется в контейнер уровня С-4; третичный цифровой поток ЕЗ с числом 537 байт на длительности Тц = 125 мкс путем добавления выравнивающих байт преобразуется в контейнер уровня С-3. Аналогично цифровой поток североамериканского стандарта ПЦИ уровня DS3 со скоростью передачи 45 Мбит/с преобразуется также в контейнер уровня С-3. Первичный цифровой поток Е1 путем добавления выравнивающих бит преобразуется в контейнер типа С-12, а североамериканский DS1 - в контейнер С-11.
Затем контейнеры С-4, С-3, С-12 или С-11 посредством операции размещенияпреобразуются в виртуальные контейнеры VC(Virtual Container - VC) соответствующего уровня с периодом 125 или 250 мкс. Виртуальный контейнер VC получается из контейнера С путем добавления в структуру последнего байт трактового заголовка РОН(Path Over Head), обеспечивающего контроль качества тракта и передачу аварийной и эксплуатационной информации. Условно операция размещения заключается в том, что информация, содержащаяся в контейнере С, размещается на определенных позициях виртуального контейнера, чередуясь с битами трактового заголовка.
Для европейского стандарта СЦИ имеют место следующие типы виртуальных контейнеров:
VC-12,содержащий контейнер С-12 и трактовый заголовок -РОН, который путем выравнивания, заключающегося в добавлении байт указателя PTR(PoinTeR - указатель),преобразуется в компонентный блокуровня TU-12(Tributary Unit - TU);
VC-3 - виртуальный контейнер высшего уровня, содержащий контейнер С-3, трактовый заголовок - РОН, и далее выравниванием и добавлением байт указателя PTR преобразуется в компонентный блокуровня TU-3;
VC-4 - виртуальный контейнер высшего уровня, содержащий контейнер С-4, трактовый заголовок, и путем выравнивания и добавления байт PTR преобразуется в административный блок AU-4(Administrative Unit - AU).
Соответствующим мультиплексированием с коэффициентами мультиплексирования равными 3, 7 и 1, формируются группы компонентных блоков TUG (Tributary Unit Group) второго TUG-2и третьего (высшего) TUG-Зуровней.
Как следует из рис. 11, виртуальный контейнер VC-4 формируется либо на основе контейнера С-4, либо путем мультиплексирования с коэффициентом мультиплексирования, равным 3, из компонентных блоков TUG-З. Виртуальный контейнер VC-4 преобразуется в административный блок AU-4, а последний с помощью мультиплексирования преобразуется в группу административных блоков AUG.
Формирование синхронного транспортного модуля уровня N STM-N осуществляется путем мультиплексирования группы административных блоков с коэффициентом мультиплексирования, равным N порядку STM, и добавлением в его структуру заголовка регенерационной секции RSOH(Regeneration Section Over Head) и заголовка мультиплексной секции MSOH(Multiplex Section Over Head).
Рассмотрим пример формирования модуля STM-1 на основе компонентного потока Е1.
Шаг 1.Все начинается с формирования контейнера С-12, наполняемого компонентным цифровым потоком Е1 со скоростью 2,048 Мбит/с. Этот поток, для удобства последующих пояснений, лучше представить в виде цифровой 32-байтной последовательности, циклически повторяющейся с периодом 125 икс, т.е. с периодом STM-1 (это так, если учесть, что 2,048-106-125-1ГГ6/8 = 32 байта).
К этой последовательности в процессе формирования контейнера С-12 добавляются выравнивающие, фиксирующие, управляющие и упаковывающие биты, составляющие два байта. Следовательно, размер контейнера С-12 равен 34 байтам.
Шаг 2.Далее к контейнеру С-12 добавляется трактовый заголовок РОН длиной в один байт с указанием маршрутной информации, используемой, в основном, для сбора статистики прохождения контейнера по трактам передачи. В результате формируется виртуальный контейнер VC-12 размером 35 байт.
Шаг 3.Добавление указателя PTR длиной в один байт преобразует виртуальный контейнер VC-12 в субблок (трибный блок) TU-12 размером 36 байт.
Шаг 4.Последовательность субблоков TU-12 в результате байт-мультиплексирования с коэффициентом мультиплексирования, равным 3, преобразуется в группу субблоков (грибных блоков) TUG-2 с суммарной длиной последовательности 3 х 36 = 108 байтов.
Шаг 5.Последовательность TUG-2 подвергается повторному мультиплексированию с коэффициентом мультиплексирования равным 7, в результате чего формируется последовательность длиной 108 х 7 = 756 байт. К этой последовательности добавляются 18 байт индикации нулевого указателя - NPI и фиксированного пустого поля - FSи получается группа субблоковTUG-3 размером 774.
Шаг 6.Полученная цифровая последовательность вновь байт-мультиплексируется с коэффициентом, равным 3, и формируется группа субблоков TUG-3 с суммарной длиной 774 х 3 = 2322байта.
Шаг 7.Происходит формирование виртуального контейнера высшего порядка VC-4 в результате добавления к последовательности группы блоков TUG-3 трактового заголовка длиной 9 байтов и 18 байтов пустого поля. Размер VC-4 равен 2322 + 9 + 18 = 2349байт.
Шаг 8. На последнем этапе происходит формирование синхронного транспортного модуляSTM-1. При этом сначала формируется административный блок AU-4 путем добавления указателя PTR длиной 9 байт, который располагается в секционном заголовке ЗОН, а затем получается группа административных блоков AUG путем формального мультиплексирования с коэффициентом, равным 1. К группе AUG добавляется заголовок регенерационной секции RSOHемкостью 27 байт и заголовок мультиплексной секции MSOHемкостью 45 байт и тем самым завершается формирование STM-1 длиной 2349 + 9 + 27 + 45 = 2430байт, что при цикле, равном Тц = 125 мкс, соответствует скорости передачи, равной 2430 х 8/125 х КГ6 = 155,52 Мбит/с.
Синхронный транспортный модуль уровня N получается мультиплексированием цифрового потока STM-1 с соответствующим коэффициентом мультиплексирования.