русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Аннулирующий многочлен подпространства


Дата добавления: 2014-10-02; просмотров: 1030; Нарушение авторских прав


Будем говорить, что многочлен p(t) аннулирует подпространство W, если он аннулирует каждый вектор из W. Аннулирующий многочлен подпространства W наименьшей степени называется минимальным аннулирующим многочленом подпространства W. Как и минимальный аннулирующий многочлен вектора, минимальный аннулирующий многочлен подпространства определен с точностью до множителя. Для определенности, будем считать старший коэффициент минимального аннулирующего многочлена подпространства равным 1.

Свойство 10.2. Аннулирующий многочлен подпространства делится без остатка на минимальный аннулирующий многочлен этого же подпространства.

Доказательство. Пусть f(t) –аннулирующий многочлен, а p(t) – минимальный аннулирующий многочлен. Разделим f(t) на p(t) с остатком f(t)=p(t)g(t)+r(t). Тогда для вектора x из W справедливо равенство . Так как степень r(t) меньше степени p(t), и многочлен r(t) аннулирует любой вектор x из W, то единственная возможность r(t)=0.

Теорема 10.3. Минимальный аннулирующий многочлен подпространства равен наименьшему общему кратному минимальных аннулирующих базисных векторов.

Доказательство. Пусть - базис подпространства W, h - минимальный аннулирующий многочлен подпространства W - минимальный аннулирующий многочлен вектора , где i=1,…,k. Многочлены являются делителями h(t) (Свойство 10.1). С другой стороны, наименьшее общее кратное этих многочленов аннулирует все базисные векторы, а значит и любой вектор из W.

Следствие 10.2. Минимальный аннулирующий многочлен подпространства является делителем характеристического многочлена.

Доказательство. Пусть - базис подпространства W, а - минимальный аннулирующий многочлен вектора , где i=1,…,k. Многочлены являются делителями характеристического многочлена (Теорема 10.2), следовательно, характеристический многочлен делится и на их наименьшее общее кратное, равное минимальному аннулирующему многочлену подпространства.



Если в качестве подпространства взять все пространство, то минимальный аннулирующий многочлен подпространства называется минимальным аннулирующим многочленом.

Следствие 10.3. Минимальный аннулирующий многочлен является делителем характеристического многочлена и имеет то же самое множество корней.

Доказательство очевидно.



<== предыдущая лекция | следующая лекция ==>
Аннулирующий многочлен вектора. | Вычисление линейных рекуррентных последовательностей


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.37 сек.