русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Пучок матриц


Дата добавления: 2014-10-02; просмотров: 1368; Нарушение авторских прав


Пусть даны квадратичные формы и . Рассмотрим пучок квадратичных форм . Если квадратичные формы и заменой координат x=Py приводятся к каноническому виду, то все формы из пучка приводятся к каноническому виду этой же заменой координат. Пусть и , тогда . Из последнего равенства выводим , то есть многочлен раскладывается на линейные множители над полем вещественных чисел. Из равенства выводим, что i-ый столбец матрицы P удовлетворяет однородной системе уравнений . Таким образом, получается следующий алгоритм приведения пары квадратичных форм к нормальному виду.

  1. Раскладываем многочлен на линейные множители. Если разложения не существует, то искомой замены координат не существует.
  2. Для каждого линейного множителя многочлена находим базис подпространства . Если размерность подпространства меньше кратности множителя, то искомой замены координат не существует. В противном случае, будет построен базис, в котором квадратичные формы имеют нормальный вид.

Для обоснования этого подхода требуется показать, что объединение линейно независимых систем векторов, соответствующих разным линейным множителям, образует линейно независимую систему. Доказательство проводится также как и для собственных векторов.

Приведение квадрики ортогональным преобразованием. Ортогональные инварианты и полуинварианты.

Рассмотрим задачу упрощения уравнения квадрики с использованием ортогональным преобразованием системы координат. Отметим, что при ортогональной замене координат сохраняются метрические характеристики.

Опишем алгоритм приведения квадрики к простейшему виду ортогональным преобразованием.

  1. Приводим квадратичную форму к главным осям ортогональным преобразованием . В результате получим уравнение квадрики , где , k – ранг матрицы A, а - ее ненулевые собственные числа.
  2. Сдвигом начала координат при и при i>k приведем квадрику к виду , где . Если при i>k, то конец, а иначе перейдем на следующий шаг.
  3. Положим . Система векторов - ортонормированная. Дополним ее до ортонормированного базиса всего пространства. Пусть T – матрица перехода к новому базису. Сделаем замену переменных . Очевидно, сделанная замена является ортогональной. В новой системе координат уравнение квадрики .

Оформим доказанное выше в виде теоремы.



Теорема 9.2. Ортогональным преобразованием, сдвигом начала координат и умножением на ненулевое число уравнение квадрики приводится к одному из следующих четырех видов , , , .

Обозначим через сумму всех главных миноров k-го порядка матрицы A. Величина является коэффициентом характеристического многочлена при .

Пусть квадрика ортогональным преобразованием x=h+Ty приводится к виду , где , , . Поскольку T ортогональная матрица, то , и, значит, , где k=1,…,n. Кроме того, , и, следовательно, . Тем самым установлен следующий факт.

Свойство 9.1 При ортогональном преобразовании не меняются следующие величины , где k=1,…,n, и , которые называются ортогональными инвариантами квадрики.

К сожалению, ортогональные инварианты не всегда позволяют установить простейший тип квадрики.

Свойство 9.2. Пусть и , тогда не меняется при ортогональном преобразовании.

Доказательство. При ортогональном преобразовании (без сдвига) величины не меняются. Пусть квадратичная форма приводится к главным осям ортогональной заменой координат . Пусть - ортогональное преобразование квадрики. Поскольку , то для доказательства утверждения достаточно рассмотреть случай, когда - диагональная матрица и преобразование заключается в сдвиге на вектор h начала координат. Если , то . В этой матрице единственный минор k порядка, не содержащий нулевых строк, определитель которого не зависит от сдвига. Следовательно, утверждение в данном случае доказано. Пусть , тогда . В этой матрице единственный минор k порядка, не содержащий нулевых строк, определитель которого не зависит от сдвига. Следовательно, утверждение и в данном случае доказано.

Величины называются полуинвариантами ортогонального преобразования.

Набор инвариантов и полуинвариантов квадрики позволяет однозначно установить простейшее уравнение квадрики.



<== предыдущая лекция | следующая лекция ==>
Первый способ | Ортогональная классификация кривых второго порядка


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.535 сек.