русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Сопряженное преобразование. Свойства.


Дата добавления: 2014-10-02; просмотров: 1234; Нарушение авторских прав


Пусть e1,…,en базис V, - матрица линейного преобразования , Ge – матрица Грама скалярного произведения. Перейдем от равенства векторов к равенству координат . Из этого равенства выводим . В случае ортонормированного базиса формула принимает более простой вид . Для евклидова пространства, знак комплексного сопряжения можно опустить.

Свойство 8.3. Перечислим свойства сопряженного преобразования

1)

2)

3)

4)

5) Если W инвариантное подпространство , то ортогональное дополнение к W инвариантно относительно .

Доказательство. Из равенства выводим первое свойство. Второе свойство получается из равенств . Для доказательства третьего свойства достаточно рассмотреть равенства . Четвертое свойство доказывается равенствами . Докажем пятое свойство. Для произвольного вектора x из W и произвольного вектора скалярное произведение . По определению сопряженного преобразования , и, значит , что и требовалось доказать.

Пятое свойство позволяет дать другое доказательство теоремы Шура.



<== предыдущая лекция | следующая лекция ==>
Линейное преобразование и билинейные функции | Нормальное преобразование и его свойства.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.145 сек.