русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Исследование операций. Экономико-математические модели.


Дата добавления: 2014-10-02; просмотров: 1636; Нарушение авторских прав


 

Управление организационными системами (оргсистемами) – сложная проблема. Характерной особенностью таких систем является включение в них, наряду с материальными, денежными, энергетическими и информационными ресурсами, также и коллективов людей, взаимодействующих как между собой, так и с указанными ресурсами. Примерами оргсистем служат фирмы, ведомства, министерства, вузы и их филиалы, города и др.

Оргсистемы являются объектом изучения теории исследования операций.

Под операцией понимают совокупность действий, направленных на достижение поставленной цели.

Исследование операций – научная дисциплина, занимающаяся разработкой и практическим применением методов управления различными оргсистемами.

Ее цель – количественное обоснование принимаемых управленческих решений и прогнозных планов развития.

Исследование операций осуществляется на математических моделях изучаемых объектов.

Термин «модель» используется в различных сферах человеческой деятельности и имеет множество смысловых значений. В нашем курсе лекций определим модель как материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале.

Следовательно, модель является инструментом научного познания. Она строится субъектом исследования так, чтобы отобразить характеристики объекта-оригинала (свойства, взаимосвязи, структурные и функциональные параметры и т.п.), существенные для цели исследования. Поэтому вопрос об адекватности модели объекту-оригиналу правомерно решать лишь относительно определенной цели.

Процесс построения, изучения и применения моделей называется моделированием. Его сущность схематически представлена на рис. 1.

 

Рис. 1.

Моделирование в экономике – это воспроизведение экономических объектов и процессов в ограниченных, малых, экспериментальных формах, в искусственно созданных условиях.



В экономике в основном используется математическое моделирование посредством описания экономических процессов математическими зависимостями. При изучении экономических процессов математические модели рассматриваются в тесной связи с целевыми системами и представляют собой некоторые целостные структуры, называемые экономико-математическими моделями (ЭММ). Таким образом, ЭММ – модели, включающие в себя совокупность математических зависимостей, логических построений, схем, графиков и т.д., связанных в некоторую единую систему, имеющую экономический смысл.

Приведем следующую общую классификацию ЭММ.

По целевому назначению ЭММ делятся на теоретико-аналитические и прикладные. Теоретико-аналитические ЭММ предназначены для исследования общих свойств и закономерностей экономических процессов. Прикладные ЭММ используются при решении конкретных экономических задач.

По характеру отражения причинно-следственных связей выделяют жестко детерминистские ЭММ и ЭММ, учитывающие случайность и неопределенность.

По способам отражения фактора времениЭММ делятся на статические и динамические. В статических ЭММ все зависимости относятся к одному моменту или периоду времени. Динамические ЭММ характеризуют изменения экономических процессов во времени.

По исследуемым экономическим процессам различают макроэкономические и микроэкономические ЭММ. Макроэкономические модели строятся на уровне национального хозяйства, а микроэкономические – на уровне организаций, их объединений и отдельных регионов.

Существуют и другие признаки классификации ЭММ. Причем с развитием экономико-математических исследований классификация исследуемых ЭММ расширяется.

Отметим также, что по характеру используемого математического аппарата при построении ЭММ различают методы классической и прикладной математики.

Методы классической математики включают математический анализ, линейную алгебру, теорию вероятностей и др.

Методы прикладной математики включают линейное, нелинейное, динамическое, целочисленное и другое программирование, математическую статистику, комбинаторику, теорию игр, управление запасами, теорию массового обслуживания, экспертные оценки и др.

Одним из признаков качества функционирования оргсистемы является критерий оптимальности ее функционирования. В сфере принятия экономических решений критерий оптимальности – это показатель, выражающий предельную меру экономического эффекта принимаемого управленческого решения для сравнительной оценки возможных решений и выбора наилучшего из них.

Критерий оптимальности, как правило, носит количественный характер. Например, в его роли могут выступить максимум прибыли или минимум затрат.

Математической формой критерия оптимальности в ЭММ является так называемая целевая функция, экстремальное значение которой характеризует предельно допустимую эффективность деятельности моделируемого объекта-оригинала.

На практике нередко успех операции оценивается не по одному, а сразу по нескольким критериям. В этом случае для выбора оптимального решения используют два подхода.

Первый подход заключается в том, что в целевой функции устанавливают приоритет критериев введением специальных коэффициентов (весов).

Второй подход состоит в отбрасывании из множества допустимых решений заведомо неудачных решений, уступающих другим по всем критериям. В результате такой процедуры остаются эффективные или так называемые «паретовские» решения, множество которых существенно меньше исходного.

Компромиссное решение – решение, оптимальное по всем критериям, как правило, не существует. И потому окончательный выбор приемлемого по этим критериям решения остается за лицом, принимающим решение.


ЛЕКЦИЯ 2

 



<== предыдущая лекция | следующая лекция ==>
МЕТОДЫ ОПТИМАЛЬНЫХ РЕШЕНИЙ | Продуктивные модели.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.011 сек.