Поверхностью второго порядка называется множество точек пространства, декартовы координаты, которых удовлетворяют алгебраическому уравнению второй степени.
Две поверхности второго порядка в общем случае пересекаются по пространственной линии четвертого порядка, которую называют биквадратной кривой.
В некоторых случаях биквадратная кривая распадается на две плоские кривые второго порядка, причем одна из них может быть мнимой.
Опуская доказательства, приведем некоторые теоремы и примеры, иллюстрирующие их применение.
Теорема 1. Если две поверхности второго порядка пересекаются по одной плоской кривой, то существует и другая плоская кривая, по которой они пересекаются.
Рассмотрим пример, к которому приложима теорема.
Фронтальные проекции q2 сферы Q и W2 эллиптического цилиндра W, имеющих общую окружность m(m2) с центром О(О2).
Плоскость σ, определяемая центром сферы С и осью i цилиндра, является плоскостью симметрии заданных поверхностей, и параллельна фронтальной плоскости проекций.
Общая окружность радиуса r – это одна из плоских кривых второго порядка распавшейся линии пересечения. Остается построить вторую кривую, плоскость α которой должна быть в условиях данного примера перпендикулярна плоскости симметрии σ, а следовательно и П2. Вторая линия пересечения (окружность) проецируется на П2 в виде отрезка прямой n2. Для ее построения следует воспользоваться точками А2 и В2, принадлежащими очеркам заданных поверхностей.
Теорема 2.(о двойном касании). Если две поверхности второго порядка имеют касание в двух точках А и В, то линия их пересечения распадается на две плоские кривые второго порядка, плоскость которых проходит через отрезок АВ, соединяющий точки касания.
Например, по двум окружностям m и n пересекается сфера S и эллиптический цилиндр Q. Точки касания и касательные плоскости обозначены соответственно через А, В, α, β. Окружности, на которые распалась линия пересечения поверхностей, расположены во фронтально- проецирующих плоскостях γ и δ.
Теорема 3. (теорема Г. Монжа). Если две поверхности второго порядка описаны около третьей или вписаны в нее, то линия их пересечения распадается на две плоские кривые второго порядка. Плоскости этих кривых проходят через прямую, соединяющую точки линий касания.
В соответствии с этой теоремой линия пересечения конуса Σ и цилиндра Q, описанных около сферы W, будут плоскими кривыми – эллипсами (расположенными в плоскостях a и b), фронтальные проекции которых изображаются прямыми А2В2 и С2Д2,
Теорема Монжа находит эффективное применение при конструировании трубопроводов.
Теорема 4. Если две поверхности второго порядка имеют общую плоскость симметрии, то линия их пересечения проецируется на эту плоскость в виде кривой второго порядка.
Плоскость симметрии определена осью симметрии цилиндра Q и центром сферы S. Плоскости принадлежат и симметричные сами себе точки A, B, C и D линий пересечения. Проекция же линий на фронтальную плоскость имеет форму параболы m2 и аналитически описывается формулой параболы.