Несмотря на то, что графический метод решения задач линейного программирования применяется только для задач с двумя искомыми переменными (или в случае трехмерного пространства с тремя), этот метод позволяет понять основную суть линейного программирования.
Задача 1.
Рассмотрим систему неравенств
(1)
и линейную форму
(2)
Найти минимум и максимум линейной формы (2) из области решений системы (1).
Решение.
Построим выпуклый многоугольник, заданный системой неравенств (1). Для этого построим прямоугольную систему координат х1ох2. Если в этой системе координат построить прямую ах1+bх2=с, то эта прямая разбивает плоскость х1ох2 на две полуплоскости, каждая из которых лежит по одну сторону от прямой. Сама прямая в этом случае называется граничной и принадлежит обеим полуплоскостям. Координаты точек, лежащих в одной полуплоскости удовлетворяют неравенству ах1+вх2≤с, а координаты точек, лежащих в другой полуплоскости, удовлетворяют неравенству ах1+вх2≥с. Построим в плоскости х1ох2 граничные прямые:
1) 4)
2) 5)
3)
В результате получим пятиугольник АВСDЕ (рис. 2)
Значения х1 и х2 , удовлетворяющие системе неравенств (1), являются координатами точек, лежащих внутри или на границе найденного пятиугольника. Теперь задача сводится к тому, чтобы найти те значения х1 и х2 при которых линейная форма L (2) имеет минимум, и те значения х1 и х2 при которых линейная форма L достигает максимума. Из рис. 2 видно, что координаты всех точек, лежащих внутри или на границе пятиугольника, не являются отрицательными, т.е. все значения х1 и х2 больше или равны нулю.
Рис. 2
Для каждой точки плоскости х1ох2 линейная форма L принимает фиксированное значение. Множество точек, при которых линейная форма L принимает фиксированное значение L1 , есть прямая , которая перпендикулярна вектору . Если прямую передвигать параллельно самой себе в положительном направлении вектора , то линейная форма L будет возрастать, а в противоположном направлении – убывать. Построим прямую для того случая, когда L = 0, т.е. построим прямую . Как видно из рис. 2, при передвижении прямой в положительном направлении вектора она впервые встречается с вершиной А(0;2) построенного пятиугольника АВСDЕ. В этой вершине линейная форма L имеет минимум. Следовательно,
.
При дальнейшем передвижении прямой параллельно самой себе в положительном направлении вектора значение линейной формы будет возрастать, и оно достигает максимального значения в точке С(8;6). Таким образом,
.
Задача 2.
Туристской фирме требуется не более 10 автобусов грузоподъёмностью 3 тонны и не более 8 автобусов грузоподъёмностью 5 тонн. Цена автобуса первой марки 20000 у.е., цена автобуса второй марки 40000 у.е. Туристская фирма может выделить для приобретения автобусов не более 400000 у.е. Сколько следует приобрести автобусов каждой марки в отдельности, чтобы их общая (суммарная) грузоподъёмность была максимальной.
Решение.
Пусть приобретено х1 трёхтонных, х2 пятитонных автобусов, тогда заданные условия задачи можно записать так:
или (1)
Линейная форма L (часто её называют целевой функцией) применительно к условиям нашей задачи имеет вид:
(2)
Требуется найти те значения х1и х2, при которых L достигает максимального значения. По условию задачи . Решим задачу графическим методом, который был использован при решении задачи 1. Построим многоугольник АВСDЕ (рис. 3), все точки которого удовлетворяют системе неравенств.
(3)
Затем построим вектор и прямую . Перемещая прямую параллельно самой себе в положительном направлении вектора , установим, что L достигает максимального значения в точке С, для которой х1 = 10 и х2 = 5. Следовательно, туристской фирме следует приобрести 10 трёхтонных и 5 пятитонных автобусов. В этом случае общая грузоподъёмность составит 55 тонн. ( )
Задачи для расчетной работы №3
В задачах 1-10 построить выпуклый многоугольник, заданный системой неравенств и, пользуясь графическим методом, найти минимум и максимум линейной формы .
1. 2.
3. 4.
5. 6.
7. 8.
9. 10.
Задачи 11-20. Туристской фирме требуется не более а трехтонных автобусов и не более в пятитонных автобусов. Отпускная цена автобусов первой марки 20000 у.е., второй марки 40000 у.е. Туристская фирма может выделить для приобретения автобусов не более с у.е. Сколько следует приобрести автобусов каждой марки в отдельности, чтобы их общая (суммарная) грузоподъёмность была максимальной. Решить задачу графическим методом.
11. а = 11 в = 9 с = 460000
12. а = 12 в = 10 с = 520000
13. а = 13 в = 11 с = 580000
14. а = 14 в = 12 с = 640000
15. а = 15 в = 13 с = 700000
16. а = 16 в = 14 с = 760000
17. а = 17 в = 15 с = 820000
18. а = 18 в = 16 с = 880000
19. а = 19 в = 17 с = 940000
20. а = 20 в = 18 с = 1000000
Основы мехатроники и робототехники
Методические указания по выполнению лабораторных работ
Укрупненная группа направлений и специальностей:
220000 - Автоматика и управление
Направление подготовки:
220400 - Мехатроника и робототехника
Специальность:
220401 - Мехатроника
Иркутск
ВВЕДЕНИЕ
Перечень и тематика лабораторных работ по курсу «Компьютерное управление мехатронными системами»:
1. Устроейство модулей промышленного робота МРЛУ-200-901;
2. Устроейство механизмов вращательного и поступательного движения промышленного робта
МП-9С;
3. Определение инерциальных характеристик звеньев манипуляционного механизма;
4. Устройство модулей промышленного робота «Электроника НЦ ТМ-01»
5. Устройство промышленного робота М20П.40.01;
Задания на каждую лабораторную работу приведены в описании лабораторных работ. После выполнения лабораторной работы необходимо оформить отчет согласно СТО ИрГТУ.005-2007 «Учебно-методическая деятельность. Общие требования к оформлению текстовых и графических работ студентов». Его можно оформить в электронном виде с помощью приложений Microsoft Word, Microsoft Excel. При программировании необходимо использовать язык С++. В отчет следует включить:
1) титульный лист. Все листы отчета необходимо пронумеровать, на титульном листе номер не ставится;