Понятие множества и операций над множествами позволяют уточнить наше представление о классификации.
Любая классификация связана с разбиением некоторого множества объектов на подмножества.
Определение. Множество А разбито на классы А1, А2, ..., Ап, если:
1) подмножества А1, А2, ..., Ап не пусты;
2) подмножества А1, А2, ..., Ап попарно не пересекаются;
3) объединение подмножеств совпадает с множеством А.
Если не выполнено хотя бы одно свойство, то классификацию считают неправильной.
Например, если множество треугольников разбить на остроугольные, прямоугольные и тупоугольные, то разбиение будет выполнено верно, т.к. выполнены все условия, данные в определении.
Если из множества треугольников выделить подмножества равносторонних, равнобедренных и разносторонних треугольников, то разбиения мы не получим, т.к. множество равносторонних треугольников является подмножеством равнобедренных треугольников, т.е. не выполняется второе условие разбиения множества на классы.
Пример 1. Пусть А – множество двузначных чисел. Рассмотрим на этом множестве свойство «быть четным».
А
А2
А1
Множество А разбилось на два подмножества:
А1 – множество четных чисел,
А2 – множество нечетных чисел, при этом
А1 È А2 = А и А1 Ç А2 = Æ.
Т.о. задание одного свойства приводит к разбиению этого множества на 2 класса.
Пример 2. Пусть А – множество треугольников. Рассмотрим на данном множестве два свойства: «быть прямоугольным» и «быть равнобедренным». При помощи этих свойств из множества треугольников можно выделить 2 подмножества: В – множество прямоугольных треугольников и С – множество равнобедренных треугольников. Эти множества пересекаются, но ни одно из них не является подмножеством другого.
По рисунку видно, что получилось 4 класса:
I – В Ç С – множество равнобедренных прямоугольных треугольников;
II – В Ç – множество прямоугольных, но не равнобедренных треугольников;
III –Ç С – множество равнобедренных, но не прямоугольных треугольников;
IV –Ç – множество не равнобедренных и не прямоугольных треугольников.
Т.о. с помощью двух свойств множество разбилось на 4 класса, таких, что их пересечение пусто, а их объединение составляет множество А.
Следует отметить, что задание двух свойств приводит к разбиению множества на 4 класса не всегда.
Пример 3. Пусть А – множество треугольников. Рассмотрим на данном множестве два свойства: «быть прямоугольным» и «быть остроугольным». При помощи этих свойств из множества треугольников можно выделить 2 подмножества: В – множество прямоугольных треугольников и С – множество остроугольных треугольников. Эти множества не пересекаются. По рисунку видно, что при помощи этих свойств множество треугольников разбивается на три класса:
I – множество прямоугольных треугольников;
II – множество остроугольных треугольников;
III – множество не прямоугольных, не остроугольных треугольников.
Контрольные вопросы
1. При каких условиях считают, что множество разбито на классы?
2. Как определить число элементов в объединении двух или трех конечных множеств?