В предыдущих параграфах была рассмотрена мера неопределенности выбора для дискретного источника информации. На практике в основном встречаются с источниками информации, множество возможных состояний которых составляет континуум. Такие источники называют непрерывными источниками информации.
Во многих случаях они преобразуются в дискретные посредством использования устройств дискретизации и квантования. Вместе с тем существует немало и таких систем, в которых информация передается и преобразуется непосредственно в форме непрерывных сигналов. Примерами могут служить системы телефонной связи и телевидения.
Оценка неопределенности выбора для непрерывного источника информации имеет определенную специфику. Во-первых, значения, реализуемые источником, математически отображаются случайной непрерывной величиной. Во-вторых, вероятности значений этой случайной величины не могут использоваться для оценки неопределенности, поскольку в данном случае вероятность любого конкретного значения равна нулю. Естественно, однако, связывать неопределенность выбора значения случайной непрерывной величины с плотностью распределения вероятностей этих значений. Учитывая, что для совокупности значений, относящихся к любому сколь угодно малому интервалу случайной непрерывной величины, вероятность конечна, попытаемся найти формулу для энтропии непрерывного источника информации, используя операции квантования и последующего предельного перехода при уменьшении кванта до нуля.
Для обобщения формулы Шеннона разобьем интервал возможных состояний случайной непрерывной величины Х на равные непересекающиеся отрезки Dх и рассмотрим множество дискретных состояний х1, x2, ... , xm с вероятностями Pi = p(xi)Dx (i = 1, 2, ... , m). Тогда энтропию можно вычислить по формуле:
В пределе при Dx ®0 с учетом соотношения:
,
Получим .
Первое слагаемое в правой части соотношения имеет конечное значение, которое зависит только от закона распределения непрерывной случайной величины Х и не зависит от шага квантования. Оно имеет точно такую же структуру, как энтропия дискретного источника.
Поскольку для определения этой величины используется только функция плотности вероятности, т. е. дифференциальный закон распределения, она получила название относительной дифференциальной энтропии или просто дифференциальной энтропиинепрерывного источника информации (непрерывного распределения случайной величины Х).
Первое слагаемое в этой сумме, называемое также приведенной энтропией, целиком определяет информативность сообщений, обусловленных статистикой состояний их элементов.
Величина logDx зависит только от выбранного интервала Dx, определяющего точность квантования состояний, и при Dx =const она постоянна.