русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

СИСТЕМЫ ДИСПЕТЧЕРСКОГО УПРАВЛЕНИЯ И СБОРА ДАННЫХ (SCADA-СИСТЕМЫ)


Дата добавления: 2014-07-12; просмотров: 14473; Нарушение авторских прав


2.1 SCADA-системы: общие понятия и структура.

Диспетчеризация обеспечивает согласованную работу отдельных звеньев управляемого объекта в целях повышения технико-экономических показателей, ритмичности работы, лучшего использования производственных мощностей, контроль с целью предупреждения возникновения аварийных ситуаций. Система позволяет вести оперативный учет потребления энергоресурсов и контролировать параметры инженерного оборудования.

Когда оборудование расположено без постоянного обслуживающего персонала или другом удаленном месте, возникает необходимость удаленного контроля и управления с центрального диспетчерского пункта. Также необходимо ведение записей состояния оборудования, отклонение от нормы его параметров с возможностью дальнейшей архивации и просмотра данных за любой период времени.

Системы управления, позволяющие реализовать функции удаленного контроля и управления, называют системами управления зданием или системами диспетчеризации.

Диспетчеризации подлежат системы:

• электроснабжения и электроосвещения;

• противопожарного оборудования и устройства пожаротушения;

• вентиляции и кондиционирования воздуха;

• отопления и горячего водоснабжения;

• канализационных устройств и дренажа;

• газораспределительных пунктов и станций.

Необходимо отметить, что система диспетчеризации является надстройкой над локальной автоматикой, так как основные задачи управления инженерным

оборудованием будут выполняться независимо от функционирования системы

диспетчеризации.

Связи между элементами системы могут быть выполнены по самым разным технологиям, с применением различных типов коммуникационных интерфейсов – как проводных, так и беспроводных.

Существенным достоинством систем диспетчеризации является поддержка нескольких интерфейсов (протоколов) связи и в случаях совместного применения с оборудованием других производителей имеется возможность дальнейшего расширения системы без «привязки» к конкретному оборудованию.



Зачастую необходимо, чтобы информация о событиях, требующих внимания и

быстрого реагирования обслуживающего персонала, доходила помимо диспетчерского пункта лицам, которые непосредственно обслуживают систему, у которых не всегда под рукою персональный компьютер. В этом случае помимо передачи данных на диспетчерский пункт, информация с помощью SMS может передаваться непосредственно на мобильный телефон.

В полноценную систему диспетчеризации обычно включается сразу сервер диспетчеризации – специально выделенный компьютер, на который устанавливается SCADA система.

SCADA – это аббревиатура от слов Supervisory Control Data Acguistion (диспетчерское управление и сбор данных). SCADA представляет собой программное обеспечение, выполняющее следующие функции:

• сбор данных о состоянии инженерного оборудования от контроллеров щитов локальной автоматики;

• хранение и отображение информации о функционировании оборудования за весь срок его работы;

• уведомление обслуживающего персонала о требующих внимания событиях с помощью е-mail, SMS или факс;

• доступ к контролю и управлению оборудованием по локальной сети объекта, через Интернет и т.д.

Сервер диспетчеризации с установленной на нем SCADA системой часто называют «верхний уровень».

SCADA система имеет возможность расширяться/сращиваться с другими системами управления.

2.2 Функциональная структура SCADA.

Удаленные терминалы (RTU). Каналы связи (CS). Диспетчерские пункты управления (MTU). Операционные системы. Прикладное программное обеспечение. Центральный диспетчерский пункт.

Диспетчерское управление и сбор данных (SCADA Supervisory Control And Data Acquisition) является основным и в настоящее время остается наиболее перспективным методом автоматизированного управления сложными динамическими системами (процессами) в жизненно важных и критичных с точки зрения безопасности и надежности областях. Именно на принципах диспетчерского управления строятся крупные автоматизированные системы в промышленности и энергетике, на транспорте, в космической и военной областях, в различных государственных структурах.

За последние 10 15 лет за рубежом резко возрос интерес к проблемам построения высокоэффективных и высоконадежных систем диспетчерского управления и сбора данных. С одной стороны, это связано со значительным прогрессом в области вычислительной техники, программного обеспечения и телекоммуникаций, что увеличивает возможности и расширяет сферу применения автоматизированных систем. С другой стороны, развитие информационных технологий, повышение степени автоматизации и перераспределение функций между человеком и аппаратурой обострило проблему взаимодействия человека-оператора с системой управления. Расследование и анализ большинства аварий и происшествий в авиации, наземном и водном транспорте, промышленности и энергетике, часть из которых привела к катастрофическим последствиям, показали, что, если в 60-х годах ошибка человека являлась первоначальной причиной лишь 20% инцидентов (80%, соответственно, за технологическими неисправностями и отказами), то в 90-х годах доля человеческого фактора возросла до 80%, причем, в связи с постоянным совершенствованием технологий и повышением надежности электронного оборудования и машин, доля эта может еще возрасти (рис.1)

Рис.1. Тенденции причин аварий в сложных автоматизированных системах

 

Основной причиной таких тенденций является старый традиционный подход к построению сложных автоматизированных систем управления, который применяется часто и в настоящее время: ориентация в первую очередь на применение новейших технических (технологических) достижений, стремление повысить степень автоматизации и функциональные возможности системы и, в то же время, недооценка необходимости построения эффективного человеко-машинного интерфейса (HMI Human-Machine Interface), т.е. интерфейса, ориентированного на пользователя (оператора). Не случайно именно на последние 15 лет, т.е. период появления мощных, компактных и недорогих вычислительных средств, пришелся пик исследований в США по проблемам человеческого фактора в системах управления, в том числе по оптимизации архитектуры и HMI-интерфейса систем диспетчерского управления и сбора данных.

Изучение материалов по проблемам построения эффективных и надежных систем диспетчерского управления показало необходимость применения нового подхода при разработке таких систем: human-centered design(или top-down, сверху-вниз), т.е. ориентация в первую очередь на человека-оператора (диспетчера) и его задачи, вместо традиционного и повсеместно применявшегося hardware-centered (или bottom-up, снизу-вверх), в котором при построении системы основное внимание уделялось выбору и разработке технических средств (оборудования и программного обеспечения). Применение нового подхода в реальных космических и авиационных разработках и сравнительные испытания систем в Национальном управлении по аэронавтике и исследованию космического пространства (NASA), США, подтвердили его эффективность, позволив увеличить производительность операторов, на порядок уменьшить процедурные ошибки и свести к нулю критические (не корректируемые) ошибки операторов.

 

SCADA - процесс сбора информации реального времени с удаленных точек (объектов) для обработки, анализа и возможного управления удаленными объектами. Требование обработки реального времени обусловлено необходимостью доставки (выдачи) всех необходимых событий (сообщений) и данных на центральный интерфейс оператора (диспетчера). В то же время понятие реального времени отличается для различных SCADA-систем.

Прообразом современных систем SCADA на ранних стадиях развития автоматизированных систем управления являлись системы телеметрии и сигнализации.

Все современные SCADA-системы включают три основных структурных компонента (см. рис. 2) Remote Terminal Unit (RTU) удаленный терминал, осуществляющий обработку задачи (управление) в режиме реального времени. Спектр его воплощений широк от примитивных датчиков, осуществляющих съем информации с объекта, до специализированных многопроцессорных отказоустойчивых вычислительных комплексов, осуществляющих обработку информации и управление в режиме жесткого реального времени. Конкретная его реализация определяется конкретным применением. Использование устройств низкоуровневой обработки информации позволяет снизить требования к пропускной способности каналов связи с центральным диспетчерским пунктом.

 

Рис. 2. Основные структурные компоненты SCADA-системы

 

Master Terminal Unit (MTU), Master Station (MS) диспетчерский пункт управления (главный терминал); осуществляет обработку данных и управление высокого уровня, как правило, в режиме мягкого (квази-) реального времени; одна из основных функций обеспечение интерфейса между человеком-оператором и системой (HMI, MMI). В зависимости от конкретной системы MTU может быть реализован в самом разнообразном виде от одиночного компьютера с дополнительными устройствами подключения к каналам связи до больших вычислительных систем (мэйнфреймов) и/или объединенных в локальную сеть рабочих станций и серверов. Как правило, и при построении MTU используются различные методы повышения надежности и безопасности работы системы.

Communication System (CS) коммуникационная система (каналы связи), необходима для передачи данных с удаленных точек (объектов, терминалов) на центральный интерфейс оператора-диспетчера и передачи сигналов управления на RTU (или удаленный объект в зависимости от конкретного исполнения системы).

Функциональная структура SCADA

Существует два типа управления удаленными объектами в SCADA: автоматическое и инициируемое оператором системы.

Шеридан (рис.3) выделил четыре основных функциональных компонента систем диспетчерского управления и сбора данных человек-оператор, компьютер взаимодействия с человеком, компьютер взаимодействия с задачей (объектом), задача (объект управления), а также определил пять функций человека-оператора в системе диспетчерского управления и охарактеризовал их как набор вложенных циклов, в которых оператор.


Рис. 3. Основные структурные компоненты SCADA-систем

 

Планирует, какие следующие действия необходимо выполнить; обучает (программирует) компьютерную систему на последующие действия; отслеживает результаты (полу)автоматической работы системы; вмешивается в процесс в случае критических событий, когда автоматика не может справиться, либо при необходимости подстройки (регулировки) параметров процесса; обучается в процессе работы (получает опыт).

Данное представление SCADA явилось основой для разработки современных методологий построения эффективных диспетчерских систем.

 

2.3 Особенности SCADA как процесса управления

 

Области применения SCADA-систем

Основными областями применения систем диспетчерского управления (по данным зарубежных источников), являются:

- управление передачей и распределением электроэнергии;

- промышленное производство;

- производство электроэнергии;

- водозабор, водоочистка и водораспределение;

- добыча, транспортировка и распределение нефти и газа;

- управление на транспорте (все виды транспорта: авиа, метро, железнодорожный, автомобильный, водный);

- телекоммуникации;

- военная область.

В настоящее время в развитых зарубежных странах наблюдается настоящий подъем по внедрению новых и модернизации существующих автоматизированных систем управления в различных отраслях экономики; в подавляющем большинстве случаев эти системы строятся по принципу диспетчерского управления и сбора данных. Характерно, что в индустриальной сфере (в обрабатывающей и добывающей промышленности, энергетике и др.) наиболее часто упоминаются именно модернизация существующих производств SCADA-системами нового поколения.

Локальная система управления

Локальная система – это совокупность оборудования, которое предназначено для местного (локального) управления, защиты, контроля, мониторинга, сбора и передачи технологических параметров инженерного оборудования.

Локальные системы являются полностью независимыми системами и могут работать по своему циклу без взаимодействия с системами «верхнего уровня».

Система состоит из следующих компонентов:

• датчики;

• локальный контролер/контроллеры;

• исполнительные устройства.

Датчики предназначены для получения контроллерами необходимой информации о состоянии оборудования. Датчики бывают двух типов: дискретные (релейные), которые могут передавать только информацию вида «Норма», «Отклонение» и аналоговые – которые передают текущее значение параметра. Локальный контроллер является универсальным инструментом для обработки и анализа информации с датчиков, и управления, контроля и хранения информации о состоянии оборудования. Применяемые контроллеры могут быть как свободно конфигурируемые, в которых уже прописаны конкретные схемы применения и работы с инженерным оборудованием, так и свободно программируемые, в которых возможно запрограммировать любой алгоритм работы устройства.

Основной задачей исполнительных устройств является управление/изменение параметров работы инженерного оборудования. По своему назначению исполнительные устройства могут быть как регулирующие так и защитные.

Центральный диспетчерский пункт

Центральный Диспетчерский Пункт (далее ЦДП) – это программно-аппаратный комплекс, выполняющий функции сбора, обработки и передачи всей необходимой информации для безопасной и надежной работы объектов, на которых установлены локальные системы.

Центральный Диспетчерский Пункт предназначен для:

1. Предотвращения и дистанционного выявление причины аварии или сбоя.

Диспетчеризация позволяет предотвратить аварийную ситуацию или порчу установленного оборудования. В случае выхода за пределы параметров технологического оборудования система своевременно отреагирует на отклонение и, в зависимости от степени приоритета аварии, передаст на ЦДП сообщение об отклонении параметра с возможностью блокирования вышедших из строя элементов или их отключения. Если авария все же случилась, оперативная бригада выезжает на место происшествия уже зная, что произошло и почему, с необходимым инструментом, запчастями, комплектующими. В конечном итоге это повлияет на скорость устранения аварии.

2. Помощи обслуживающему персоналу в принятии оперативных решений.

Диспетчеризация позволяет избежать поспешных действий персонала и дистанционно точно спланировать комплекс оперативных мероприятий персонала станции до приезда сервисной бригады.

3. Минимизации влияния человеческого фактора при аварийной ситуации.В случае срабатывания аварийной сигнализации зачастую совершаются поспешные действия персонала для предотвращения аварии, и в случае неправильного выявления причины это может привести к серьёзным последствиям и длительному сбою в работе.

4. Учёта потребляемых энергоресурсов.Комплекс предназначен для учета, архивации и передачи информации в реальном масштабе времени про расход природного газа, тепла, холодной и горячей воды и электроэнергии. EXO4 – это программное обеспечение системы диспетчеризации. EXO4 имеет графический интерфейс пользователя. Все установки и команды выполняются с помощью клавиатуры и мыши.

Программное обеспечение поставляется только вместе с соответствующим аппаратным ключом, который конструктивно выполнен в виде USB-ключа или платы, которая вставляется в свободный PCI слот компьютера.

EXO4 и система EXO выполняет следующие функции:

• Динамическая визуализация объектов и процессов;

• Управление и мониторинг объектами;

• Дистанционное чтение аварий и данных;

• Многопользовательская система со структурой авторизации и управления

пользователями;

• Регистрация и управление событиями;

• Слежение за авариями и состояниями (4 уровня приоритетов аварий);

• Создание рапортов и отчетов об авариях и неисправностях;

• Подтверждение, блокировка и разблокировка аварийных сообщений;

• Звуковое и визуальное сопровождение аварийных сообщений;

• Перенаправление сообщений об авариях на один или несколько принтеров в

зависимости от времени и (или) события;

• Построение графиков и трендов (точек) в реальном времени;

• Управление данными и архивированием;

• Сетевая коммуникация по технологии клиент-сервер и поддержка различных

протоколов;

• Всплывающие подсказки;

• Временные программы;

• Многооконный интерфейс;

• Управление базами данных;

• Поддержка проводных и беспроводных устройств передачи данных;

• Автоматический переход на зимнее и летнее время;

• Синхронизация системы.

Пользователю предоставляется удобный интуитивно понятный графический интерфейс. Управление и визуализация всем инженерным оборудованием может происходить как с использованием мнемосхем, так и при помощи анимации, графиков, с использованием фотоматериалов и гистограмм.

Линии связи

Под понятием линии связи принимают системы для передачи и приема информации с помощью различных технических средств.

В зависимости от способа передачи информации различают проводную стационарную связь (посредством передачи пакетов информации по телефонным линиям) и мобильную радиосвязь (посредством радиосигнала).

Услуги проводной телефонной связи оказывают как государственные компании, так и некоторые коммерческие операторы.

При использовании проводной связи оптимальным решением является использование защищенных каналов связи, называемых еще VPN каналами. Информация, передаваемая по таким каналам, кодируется специальными аппаратными средствами и не может быть использована сторонними пользователями. Есть также возможность защитить каналы, используя обмен только между конечными точками каналов. Существует три варианта подключения: используя выделенную Ethernet линию или широкополосное ADSL соединение (использование сети Интернет) и по коммутированному телефонному соединению с помощью телефонных модемов. Каждый из приведенных вариантов зависит от технической возможности оператора в том или ином регионе.

 

Услуги мобильной радиосвязи предоставляются исключительно коммерческими Операторами. Способы передачи данных аналогичны проводной передаче с той лишь разницей, что вместо коммутируемых соединений используются базовые станции оператора услуг. При этом есть возможность заказывать определенный объем полученной и переданной информации за календарный месяц или же платить по факту использования за каждый месяц предоставления услуги.

При выборе поставщика услуг связи необходимо знать, располагает ли оператор полным комплектом разрешительных документов и лицензий на все виды осуществляемой деятельности, а также имеет сертификаты соответствия на все поставляемые системы и средства связи.

2.4 Тенденции развития технических средств систем диспетчерского управления

Общие тенденции

Прогресс в области информационных технологий обусловил развитие всех 3-х основных структурных компонентов систем диспетчерского управления и сбора данных RTU, MTU, CS, что позволило значительно увеличить их возможности; так, число контролируемых удаленных точек в современной SCADA-системе может достигать 100000.

Основная тенденция развития технических средств (аппаратного и программного обеспечения) SCADA миграция в сторону полностью открытых систем. Открытая архитектура позволяет независимо выбирать различные компоненты системы от различных производителей; в результате расширение функциональных возможностей, облегчение обслуживания и снижение стоимости SCADA-систем.

Удаленные терминалы (RTU)

Главная тенденция развития удаленных терминалов увеличение скорости обработки и повышение их интеллектуальных возможностей. Современные терминалы строятся на основе микропроцессорной техники, работают под управлением операционных систем реального времени, при необходимости объединяются в сеть, непосредственно или через сеть взаимодействуют с интеллектуальными электронными датчиками объекта управления и компьютерами верхнего уровня.

Конкретная реализация RTU зависит от области применения. Это могут быть специализированные (бортовые) компьютеры, в том числе мультипроцессорные системы, обычные микрокомпьютеры или персональные ЭВМ (РС); для индустриальных и транспортных систем существует два конкурирующих направления в технике RTU индустриальные (промышленные) PC и программируемые логические контроллеры (в русском переводе часто встречается термин промышленные контроллеры ) PLC.

Индустриальные компьютеры представляют собой, как правило, программно совместимые с обычными коммерческими РС машины, но адаптированные для жестких условий эксплуатации буквально для установки на производстве, в цехах, газокомпрессорных станциях и т.д. Адаптация относится не только к конструктивному исполнению, но и к архитектуре и схемотехнике, так как изменения температуры окружающей среды приводят к дрейфу электрических параметров. В качестве устройств сопряжения с объектом управления данные системы комплектуются дополнительными платами (адаптерами) расширения, которых на рынке существует большое разнообразие от различных изготовителей (как, впрочем, и самих поставщиков промышленных РС). В качестве операционной системы в промышленных PC, работающих в роли удаленных терминалов, все чаще начинает применяться Windows NT, в том числе различные расширения реального времени, специально разработанные для этой операционной системы (подробнее см. ниже).

Промышленные контроллеры (PLC) представляют собой специализированные вычислительные устройства, предназначенные для управления процессами (объектами) в реальном времени. Промышленные контроллеры имеют вычислительное ядро и модули ввода-вывода, принимающие информацию (сигналы) с датчиков, переключателей, преобразователей, других устройств и контроллеров, и осуществляющие управление процессом или объектом выдачей управляющих сигналов на приводы, клапаны, переключатели и другие исполнительные устройства. Современные PLC часто объединяются в сеть (RS-485, Ethernet, различные типы индустриальных шин), а программные средства, разрабатываемые для них, позволяют в удобной для оператора форме программировать и управлять ими через компьютер, находящийся на верхнем уровне SCADA-системы диспетчерском пункте управления (MTU). Исследование рынка PLC показало, что наиболее развитой архитектурой, программным обеспечением и функциональными возможностями обладают контроллеры фирмSiemens, Fanuc Automation (General Electric), Allen-Bradley (Rockwell), Mitsubishi. Представляет интерес также продукция фирмы CONTROL MICROSYSTEMS промышленные контроллеры для систем мониторинга и управления нефте- и газопромыслами, трубопроводами, электрическими подстанциями, городским водоснабжением, очисткой сточных вод, контроля загрязнения окружающей среды.

Много материалов и исследований по промышленной автоматизации посвящено конкуренции двух направлений PC и PLC; каждый из авторов приводит большое количество доводов за и против по каждому направлению. Тем не менее, можно выделить основную тенденцию: там, где требуется повышенная надежность и управление в жестком реальном времени, применяются PLC. В первую очередь это касается применений в системах жизнеобеспечения (например, водоснабжение, электроснабжение), транспортных системах, энергетических и промышленных предприятиях, представляющих повышенную экологическую опасность. Примерами могут служить применение PLC семейства Simatic (Siemens) в управлении электропитанием монорельсовой дороги в Германии или применение контроллеров компании Allen-Bradley (Rockwell) для модернизации устаревшей диспетчерской системы аварийной вентиляции и кондиционирования на плутониевом заводе 4 в Лос-Аламосе. Аппаратные средства PLC позволяют эффективно строить отказоустойчивые системы для критических приложений на основе многократного резервирования. Индустриальные РС применяются преимущественно в менее критичных областях (например, в автомобильной промышленности, модернизация производства фирмой General Motors), хотя встречаются примеры и более ответственных применений (метро в Варшаве управление движением поездов). По оценкам экспертов, построение систем на основе PLC, как правило, является менее дорогостоящим вариантом по сравнению с индустриальными компьютерами.

 



<== предыдущая лекция | следующая лекция ==>
АВТОМАТИЗИРОВАННЫЕ СИСТЕМНЫЕ УСТРОЙСТВА: ОСНОВНЫЕ ПОНЯТИЯ | СОВРЕМЕННЫЕ ТЕХНИЧЕСКИЕ СРЕДСТВА СИСТЕМ БЕЗОПАСНОСТИ


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 1.651 сек.