русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Изучение зависимости между количественными признаками.


Дата добавления: 2014-05-29; просмотров: 857; Нарушение авторских прав


Для исследования взаимосвязи качественных альтернативных признаков, принимающих только 2 взаимоисключающих значения, используется коэффициент ассоциации и контингенции. При расчете этих коэффициентов составляется т.н. таблица 4-х камней, а сами коэффициенты рассчитываются по формуле:

 

Группы по признаку Y Группы по признаку X + - Итого:
+ a b a+b
- c d c+d
Итого: a+c c+d a+b+c+d

 

Если коэффициент ассоциации ³ 0,5, а коэффициент контингенции ³ 0,3, то можно сделать вывод о наличии существенной зависимости между изучаемыми признаками.

Если признаки имеют 3 или более градаций, то для изучения взаимосвязей используются коэффициенты Пирсена и Чупрова. Они рассчитываются по формулам:

С - коэффициент Пирсена

К - коэффициент Чупрова

j - показатель взаимной сопряженности

K - число значений (групп) первого признака

K1 - число значений (групп) второго признака

 

fij - частоты соответствующих клеток таблицы

mi - столбцы таблицы

nj - строки

 

Для расчета коэффициентов Пирсена и Чупрова составляется вспомогательная таблица:

Группа признака Y Группа признака X ... i Итого:
f11 f12 ... f1i n1
f21 f22 ... f2i n2
... ... ... ... ... ...
j fji fj2 ... fji nj
Итого: m1 m2 ... mi SSminj

При ранжировании качественных признаков с целью изучения их взаимосвязи используется коэффициент корреляции Кэндалла.

n - число наблюдений

S - сумма разностей между числом последовательностей и числом инвервий по второму признаку.

S=P+Q

P - сумма значений рангов, следующих за данными и превышающих его величину



Q - сумма значений рангов, следующих за данными и меньших его величины (учитывается со знаком «-»).

При наличии связанных рангов формула коэффициента Кендалла будет следующей:

Vx и Vy определяются отдельно для рангов X и Y по формуле:

 



<== предыдущая лекция | следующая лекция ==>
Статистические методы изучения взаимосвязей. | Методы выявления основной тенденции рядов динамики.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 1.178 сек.