русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Уравнение Бернулли для потока реальной жидкости


Дата добавления: 2014-05-29; просмотров: 1896; Нарушение авторских прав


Рассмотрим плавно изменяющийся поток (рис. 4.5). Выберем в живом сечении m-nсистему координат x, y, z,направив ось xвдоль оси потока, а ось y - горизонтально.

Углы между линиями тока малы, и поперечные компоненты скорости малы, поэтому можно принять Из уравнения неразрывности (3.17) следует, что . Пренебрегая в уравнениях Навье-Стокса (4.29) членами, зависящими от Uy и Uz, получим:

(4.35)

Так как последние два уравнения системы (4.35) не отличаются от уравнений равновесия жидкости (2.7), можно заключить, что при плавно изменяющемся движении в пределах живого сечения потока давление распределяется по гидростатическому закону. При плавно изменяющемся движении в плоскостях, параллельных плоскости y0z, в разных точках живого сечения величины zи p/ρg имеют разные значения, однако их сумма (пьезометрический напор) постоянна:

. (4.36)

В другом живом сечении сумма z+p/ρg будет иная, но постоянная для всех точек сечения. Этот результат позволяет распространить уравнение Бернулли на поток конечных размеров.

Соблюдая условие плавной изменяемости при переходе к потоку жидкости, будем исходить из (4.34). Умножив (4.34) на весовой расход струйки ρgdQ, получим уравнение, выражающее энергию элементарной струйки.

 

 

Уравнение имеет вид:

. (4.37)

Суммируя энергии струек по живому сечению потока, получим энергию всего потока:

. (4.38)

В (4.38) члены и выражают потенциальную энергию потока (в сечениях 1-1 и 2-2), которой обладает масса жидкости, проходящая через живое сечение в единицу времени.

Потенциальная энергия для произвольного сечения

Члены (4.38) и выражают кинетическую энергию массы жидкости, протекающей через живые сечения 1–1 и 2–2 потока в единицу времени. Рассмотрим эти слагаемые более подробно. Так как для произвольного сечения струйки



, то .

Скорость в отдельной (любой) струйке можно представить в виде суммы средней скорости в живом сечении потокаи её отклонения ε от средней: . Сделав подстановку, получим для кинетической энергии потока:

или

.

Здесь учтено, что , так как , а , так как ε мало и для разных точек сечения имеет разные знаки. Произведена замена и обозначено . Отсюда

.

Величина α - коэффициент Кориолиса (корректив кинетической энергии)- отношение действительной кинетической энергии потока к кинетической энергии, которой обладал бы поток при том же расходе, если бы все частицы жидкости двигались с одной и той же (средней) скоростью. Коэффициент α зависит от степени неравномерности распределения скоростей по сечению. Для ламинарного течения в круглой цилиндрической трубе α=2, для турбулентного течения α≈1.05÷1.1.

Однако при значительной неравномерности эпюры скоростей коэффициент α может достигать и больших значений.

Последнее в (4.38) слагаемое , выражающее потерю энергии потоком за единицу времени при перемещении его из сечения 1–1 в сечение 2–2, можно (осреднив потери в струйках по сечению потока) представить в виде

.

Подставляя полученные выражения в уравнение (4.38), получим:

.

После сокращения на ρgQ

. (4.39)

Выражение (4.39) - уравнение Бернулли для потокаоднородной вязкой несжимаемой капельной жидкости при установившемся плавно изменяющемся движении.

Уравнение (4.39) выражает закон изменения кинетической энергии применительно к одномерным задачам гидромеханики.

Уравнение (4.39), выведено при условии плавной изменяемости потока в выбранных расчетных сечениях. На участке потока между сечениями это условие может нарушаться.

Последний член правой части уравнения (4.39) выражает усредненную потерю удельной механической энергии (потерю напора) между сечениями 1–1 и 2–2.

Уравнению (4.39) можно дать геометрическую трактовку, построив график (диаграмму) уравнения Бернулли для потока вязкой жидкости (рис. 4.6).

 



<== предыдущая лекция | следующая лекция ==>
Уравнение Бернулли для струйки реальной жидкости | Гидравлический и пьезометрический уклоны


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.