русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Погрешность измерений


Дата добавления: 2014-05-22; просмотров: 1467; Нарушение авторских прав


 

Погрешность измерений - это отклонение значений величины, найденной путём её измерения, от истинного (действительного) значения измеряемой величины.

Погрешность прибора - это разность между показанием прибора и истинным (действительным) значением измеряемой величины.

Разница между погрешностью измерения и погрешностью прибора заключается в том, что погрешность прибора связана с определёнными условиями его поверки.

Погрешность может быть абсолютной и относительной.

Абсолютной называют погрешность измерения, выраженную в тех же единицах, что и измеряемая величина. Например, 0,4В, 2,5мкм и т. д. Абсолютная погрешность

D = А – Хист » А – Хд,

где А - результат измерения; Xист - истинное значение измеряемой величины; Xд - действительное значение измеряемой величины.

Относительная погрешность измерения представляет собой отношение абсолютной погрешности измерения к истинному (действительному) значению измеряемой величины и выражается в процентах или долях измеряемой величины:

.

В зависимости от условий измерения погрешности подразделяются на статические и динамические.

Статической называют погрешность, не зависящую от скорости изменения измеряемой величины во времени.

Динамической называют погрешность, зависящую от скорости изменения измеряемой величины во времени. Возникновение динамической погрешности обусловлено инерционностью элементов измерительной цепи средства измерений. Динамической погрешностью средства измерений является разность между погрешностью средства измерений в динамических условиях и его статической погрешностью, соответствующей значению величины в данный момент времени.

Систематической погрешностью называется погрешность, остающаяся постоянной или закономерно изменяющейся во времени при повторных измерениях одной и той же величины.



Примером систематической погрешности, закономерно изменяющейся во времени, может служить смещение настройки прибора во времени.

Случайной погрешностью измерения называется погрешность, которая при многократном измерении одного и того же значения не остаётся постоянной. Например, при измерении валика одним и тем же прибором в одном и том же сечении получаются различные значения измеренной величины.

Систематические и случайные погрешности чаще всего появляются одновременно.

Для выявления систематической погрешности производят многократные измерения образцовой меры и по полученным результатам определяют среднее значение размера. Отклонение среднего значения от размера образцовой меры характеризует систематическую погрешность, которую называют "средней арифметической погрешностью", или "средним арифметическим отклонением".

Систематическая погрешность всегда имеет знак отклонения, т.е. "+" или "-". Систематическая погрешность может быть исключена введением поправки.

При подготовке к точным измерениям необходимо убедиться в отсутствии постоянной систематической погрешности в данном ряду измерений. Для этого нужно повторить измерения, применив при этом уже другие средства измерения. По возможности нужно изменить и общую обстановку опыта - производить его в другом помещении, в другое время суток.

Прогрессивные и периодические систематические погрешности в противополож-ность постоянным можно обнаружить при многократных измерениях.

Обработка данных и оценка параметров случайных погрешностей производится методами математической статистики.

При расчёте предельной погрешности измерения определяют числовое значение погрешности измерения от всех составляющих и производят суммирование:

,

где знаки "+" или "-" ставятся из условия, чтобы систематические и случайные погрешности суммировались по модулю.

Если в случайной погрешности известно среднее квадратическое отклонение, то

,

где К - показатель, указывающий доверительные границы для предельной случайной погрешности измерения (при К=1 р=0,65; при К=2 р=0,945; при К=3 р=0,9973).

Если результаты измерений зависят от большого числа разнообразных факторов, то

y = F(x1, x2, …..xn) ,

где xi - переменные функциональные параметры.

Каждый параметр может иметь отклонение Dxi (погрешность) от предписанного значения xi. Поскольку погрешность Dxi мала по сравнению с величиной xi, суммарная погрешность Dy функции y можно вычислять по формуле

, (1.5)

где ¶y/¶xi - передаточное отношение (коэффициент влияния) параметра xi.

Формула (1.5) справедлива лишь для систематических погрешностей Dxi.

Для случайных погрешностей (когда отдельные составляющие не всегда принимают предельные значения) используются теоремы теории вероятностей о дисперсии, то есть

. (1.6)

Суммарная погрешность при наличии только случайных составляющих dxi погрешностей

,

где m - число попарно корреляционно связанных параметров;

ki и kj - коэффициенты относительного рассеяния, характеризующие степень отличия закона распределения погрешности данного параметра от нормального;

rij - коэффициент корреляции, существующий при наличии корреляционной связи между параметрами xi и xj.

При наличии и систематических и случайных составляющих погрешностей вычисляют доверительные границы суммарной погрешности:

Dyсум = Dy ± k×sy ,

где k - масштабный коэффициент интервала распределения, зависящий от закона распределения и принятой доверительной вероятности. Так, при доверительной вероятности Р = 0,95 для закона нормального распределения k = 2, а для закона Максвелла k = 3,6.

Пример. В результате измерений и последующего вычисления по формуле (1.5) получена суммарная систематическая погрешность результата измерения Dy = -0,7 мкм, стандартное отклонение этого результата измерения, вычисленное по формуле (1.6) sy = 0,4 мкм. При доверительной вероятности Р = 0,95 предел допускаемой погрешности dизм = +1 мкм. Тогда верхняя и нижняя доверительные границы погрешности

Dyсум в = -0,7 + 2×0,4 = +0,1 мкм; Dyсум н = -0,7 - 2×0,4 = -1,5 мкм.

Так как Dyсум н > dизм , выбранный метод и средство измерения не удовлетворяют требованиям точности. Следовательно, необходимо скомпенсировать систематическую составляющую погрешности, например, путём изготовления образца для настройки измерительного средства. Размер образца должен быть больше его начального размера на 0,7 мкм; тогда будет справедливо неравенство 0,8 < 1 мкм и проведённые измерения будут удовлетворять требованиям по точности.



<== предыдущая лекция | следующая лекция ==>
Основные характеристики измерений | Погрешности измерений и способы их описания с вероятностно-статистических позиций


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.615 сек.