Графы на рис. 1.3 все выглядят как различные, но каждый из них можно перерисовать так, чтобы он стал (если не обращать внимание на обозначение вершин) идентичен другому. То есть все эти графы в некотором смысле «эквивалентны», имеют одинаковую структуру. Определим более точно характер этой «эквивалентности».
(а) (б) (в)
Рис. 1.3. Изоморфные графы
Графы G=(X,U) и G'=(X',U') изоморфны (пишут G@G'), если существует взаимно-однозначное соответствие между множествами X и X', сохраняющее смежность вершин (т.е. такое соответствие, при котором вершины xi и xj из множества X смежны тогда и только тогда, когда смежны соответствующие им вершины x'i и x'j из множества X').
Изоморфизм графа рис. 1.3 (а), к графу рис.1.3 (б) обнаруживается, если задать следующее соответствие между вершинами:
Если к (1.2) применить выражение (1.1), то получится выражение (1.3), т.е. графы на рис. 1.3 (а) и рис. 1.3(б) изоморфны.
Установить изоморфизм графа рис. 1.3(в), к графам на рис. 1.3 (а) и рис. 1.3(б) предлагается самостоятельно, определив надлежащее соответствие между их вершинами.