В экономических исследованиях одной из важных задач является анализ зависимостей между изучаемыми переменными. Кроме функциональной зависимости между экономическими явлениями и процессами, существуют стохастические (вероятностные, статистические) зависимости.
Статистической называется зависимость между случайными величинами, при которой изменение одной из величин влечет за собой изменение закона распределения другой величины.
Для оценки тесноты и направления связи между изучаемыми переменными при их стохастической зависимости пользуются показателями ковариации и корреляции.
Ковариацией случайных величин Х и Y называется среднее произведение отклонений каждой пары значений величин Х и Y в исследуемых массивах данных:
Ковариация есть характеристика системы случайных величин, описывающая помимо рассеивания величин Х и Y еще и линейную связь между ними.
Доказано, что для независимых случайных величин Х и Y их ковариация равна нулю, а для зависимых случайных величин она отличается от нуля (хотя и необязательно). Поэтому ненулевое значение ковариации означает зависимость случайных величин. Однако обращение в нуль ковариации не гарантирует независимости, бывают зависимые случайные величины, ковариация которых равна нулю.
Из формулы определения ковариации видно, что ковариация характеризует не только зависимость величин, но и их рассеивание. Действительно, если, например, одна из величин Х или Y мало отличается от своего математического ожидания (почти не случайна), то показатель ковариации будет мал, какой бы тесной зависимостью ни были связаны величины Х и Y. Так что обращение в нуль ковариации величин Х и Y является недостаточным условием для их независимости, а только необходимым.
Использование ковариации в качестве меры связи признаков не совсем удобно, так как показатель ковариации не нормирован и при переходе к другим единицам измерения меняет значение. Поэтому в статистическом анализе показатель ковариации сам по себе используется редко; он фигурирует обычно как промежуточный элемент расчета линейного коэффициента корреляции :
.
В начале 90-х годов 19 века Пирсон, Эджворт и Велдон получили формулу линейного коэффициента корреляции
.
Линейный коэффициент корреляции характеризует степень тесноты не всякой, а только линейной зависимости. При нелинейной зависимости между явлениями линейный коэффициент корреляции теряет смысл, и для измерения тесноты связи применяют так называемое корреляционное соотношение, известное также под названием «индекс корреляции».
Линейная вероятностная зависимость случайных величин заключается в том, что при возрастании одной случайной величины другая имеет тенденцию возрастать (или убывать) по линейному закону. Эта тенденция к линейной зависимости может быть более или менее ярко выраженной, т.е. более или менее приближаться к функциональной.
Если случайные величины Х и Y связаны точной линейной функциональной зависимостью y = aх + b, то . В общем случае, когда величины Х и Y связаны произвольной вероятностной зависимостью, линейный коэффициент корреляции принимает значение в пределах , тогда качественная оценка тесноты связи величин Х и Y может быть выявлена на основе шкалы Чеддока