русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Бинарный поиск


Дата добавления: 2014-04-25; просмотров: 1413; Нарушение авторских прав


 

Наиболее эффективным методом поиска в упорядоченном массиве без использования вспомогательных индексов или таблиц является бинарный поиск. Упрощенно этот метод состоит в том, что аргумент сравнивается с ключом среднего элемента таблицы. Если они равны, то поиск успешно закончился. В противном случае поиск должен быть осуществлен аналогичным образом в верхней или нижней половине таблицы [3].

Известно, что бинарный поиск наилучшим образом может быть определен рекурсивно. Однако большие накладные расходы, связанные с рекурсией (память, время), делают ее неподходящей для использования в практических ситуациях, в которых эффективность является главным фактором. Рассмотрим не рекурсивную версию алгоритма бинарного поиска:

 

low=l; hi=n; search = 0;

while (low<=hi)

{

mid=(low + hi)/2;

if (key= = k[mid])

{

search = mid;

cout<<”Элемент найден.Его номер=”<< mid;

return 0;

}

else

{

if ( key<k[mid]) hi =mid-1;

else low = mid+1;

}

}

Каждое сравнение в бинарном поиске уменьшает число возможных кандидатов сравнения в 2 раза. Таким образом, максимальное число сравнений ключа, которые будут сделаны, составляет приблизительно log2n, т.е. алгоритм бинарного поиска имеет порядок O(log2n).

Отметим, что бинарный поиск может быть использован вместе с индексно-последовательной организацией таблицы и вместо последовательного поиска по индексу может быть использован бинарный поиск. Бинарный поиск может быть также использован при поиске в основной таблице, когда идентифицированы две граничные записи. Бинарный поиск практически бесполезен в ситуациях, где имеется много вставок или удалений.

 

Сбалансированные деревья (AVL-деревья)

Для удобства определим высоту пустого дерева как 0.

Баланс некоторого узла в дереве определяется как высота его левого поддерева минус высота его правого поддерева.



Сбалансированным бинарным деревом (деревом AVL) является такое бинарное дерево, у которого абсолютное значение баланса каждого узла £1.

 
 

Рис. 4.3. Сбалансированное бинарное дерево

 



<== предыдущая лекция | следующая лекция ==>
Поиск в упорядоченной таблице | Поиск по дереву


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 1.254 сек.