русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Общие модели расчета плотности распределения наработки до отказа


Дата добавления: 2014-04-22; просмотров: 661; Нарушение авторских прав




На практике вычисление плотности распределения наработки до постепенного отказа объекта при случайном изменении ОП проводится двумя путями, использование каждого из которых зависит от вида случайного процесса Х(t).

 

2.1. Случайный процесс Х(t) отличен от линейного. Для каждого интервала наработки ti = ti+1 - ti определяется среднее на этом интервале значение плотности распределения наработки до отказа путем деления приращения вероятности того, что объект находится в неработоспособном состоянии, на длину интервала

 

 
(11)
 
 

 

По полученным значениям [fi]ср , в сечениях строится гистограмма распределения времени до отказа, которая сглаживается непрерывной кривой. При этом возможно подобрать закон распределения с проверкой непротиворечия расчетным данным по критерию Пирсона.

Для вычисления [fi]ср, соответствующего интервалу ti, необходимо знать закон распределения ОП в начале (ti) и конце ti+1 = ti + ti этого интервала.

2.2. Случайный процесс Х(t) линеен. Формально в этом случае можно использовать первый путь. Поскольку распределение ОП f(X)i во всех сечениях нормально, то среднее значение плотности [fi]ср , с учетом выражений (5) и (10) определяется по (11) через функцию Лапласа

 

 
(12)
 
 

 

Для нормально распределенной случайной функции Х(t) при построении гистограммы средних значений [fi]ср достаточно знать лишь ее числовые характеристики mx(t) и Sx(t), по которым находятся значения Sx , Sxi, mxi, mx, соответствующие началу ti и концу ti+1 каждого из интервалов ti, необходимые для определения аргументов функции Лапласа:

 

 

 

 

 

Для линейных случайных процессов законы распределения наработки до отказа можно получить аналитически из выражения (7).



 

<== предыдущая лекция | следующая лекция ==>
НАДЕЖНОСТЬ ОБЪЕКТОВ ПРИ ПОСТЕПЕННЫХ ОТКАЗАХ. ОПРЕДЕЛЕНИЕ ВРЕМЕНИ СОХРАНЕНИЯ РАБОТОСПОСОБНОСТИ | Определение времени сохранения работоспособности


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.088 сек.