русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Основные типы моделей


Дата добавления: 2014-04-22; просмотров: 768; Нарушение авторских прав




Из различных модификаций линейных возрастающих случайных функций изменения ОП Х(t) или ln X(t) наиболее часто процесс приближения объекта к отказам аппроксимируется следующими типами моделей:

а) веерной с ненулевым начальным рассеиванием (рис. 2a);

б) веерной с нулевым начальным рассеиванием (рис. 2б);

в) равномерной (рис. 2в).

 

Тип модели линейной функции Х(t) или ln X(t) зависит от числа случайных аргументов, определяющих ее случайный характер.

Веерная функция с ненулевым начальным рассеиванием описывается:

- для процесса X(t)

 
(10)
 
 

- для процесса ln X(t)

 
(11)
 
 

При t = 0 значения функций (12) и (13) представляют собой случайную величину, соответственно

 
(12)
 
 

и

 
(13)
 
 

 

причем V = V' . С учетом (12) и (13) модели (10), (11) легко представляются в виде (5) и (9). Случайный характер рассмотренной модели определяется двумя случайными аргументами: X0 или ln X0 - случайное начальное значение ОП или его логарифма; V или V' - случайная скорость изменения ОП или его логарифма.

Как следует из рис. 2a, все реализации веерной линейной случайной функции с ненулевым начальным рассеиванием проходят через общую неслучайную точку - "полюс".

Аргумент рассмотренной модели - случайная скорость изменения ОП (V) или логарифма ОП (V ) - имеет нормальное распределение с плотностью распределения соответственно:

 

 
(14)
 
 

 

 
(15)
 
 

 

Линейно зависящая от V случайная функция Х(t) (10) во всех сечениях будет распределена нормально с плотностью



и параметрами распределения:

 

 
(16)
 
 

 

- матожидание mXi = M{Xi};

- среднее квадратичное отклонение

- Численные характеристики - матожидание mx(t) и СКО Sx(t), самой случайной функции (10) выражаются через числовые характеристики mv и Sv случайной скорости:

 

 
(17)
 
 

 

 
(18)
 
 

 

Cлучайное начальное значение ОП X0 соответствует сечению функции Х(t) (10) при t =0, поэтому также имеет нормальное распределение по (16) при i = 0 с параметрами mx(t = 0) = mx0 и СКО Sx(t = 0) = Sx0 , определяемыми из (17) и (18) при t=0:

 
(19)
 
 

 

 
(20)
 
 

 

С учетом (19) и (20) выражения (17), (18) для числовых характеристик случайной функции (10) изменения ОП Х(t) примут вид:

 

 
(21)
 
 

 

 
(22)
 
 

 

В соответствие с (11) нормальное распределение скорости V' приводит к тому, что линейно зависящий от V' логарифм ОП ln X(t) = Y(t) также будет распределен нормально во всех - сечениях с плотностью распределения

 

 
(23)
 
 

 

Cам же ОП при этом будет иметь логарифмически нормальное распределение, плотность которого:

 

 
(24)
 
 

 

В выражениях (23), (24)

myi = M{lnXi},

- соответственно, матожидание и СКО логарифма ОП в сечениях случайной функции (11).

Матожидание my(t) и СКО Sy(t) линеаризованной путем логарифмирования функции (11) можно получить, используя числовые характеристики случайной скорости V : mv' и Sv'. Проводя аналогичные, как для функции (10), преобразования, получаем числовые характеристики модели (11) изменения логарифма ОП lnX(t) = Y(t):

 

 
(25)
 
 

 

 
(26)
 
 

 

Веерная функция с нулевым начальным рассеиванием является частным случаем модели (5), (9) и может быть получена из указанных выражений путем замены в них, соответственно, случайных начальных значений ОП Х0 или его логарифма lnX0 = Y0 некоторым неслучайным значением K0 или lnK0.

Поскольку веерная модель с ненулевым начальным рассеиванием является

частным случаем моделей (10), (11), то ее свойства определяются свойствами указанных моделей, поэтому числовые характеристики определяются (без вывода):

- для функции Х(t) = K0 + Vt изменения ОП из (21), (22)

 

 
(27)
 
 

 

 
(28)
 
 

 

- для функции Y(t) = lnX(t) = lnK0 + V't изменения ОП из (25), (26)

 

 
(29)
 
 

 

 
(30)
 
 

 

Равномерная функция также является частным случаем моделей (5), (9) и может быть получена из последних путем замены в них соответственно случайных скоростей изменения ОП V или его логарифма V' на неслучайные (постоянные) скорости или '.

Числовые характеристики случайных функций определяются (без вывода):

- для функции изменения ОП Х(t) = X0 + t из (21), (22)

 
(31)
 
 

 

 
(32)
 
 

 

- для функции Y(t) = lnX(t) = Y0 +'t из (25), (26)

 

 
(33)
 
 

 

 
(34)
 
 

 

Рассмотренные линейные модели удобны для аппроксимации случайных процессов изменения ОП тем, что позволяют характеризовать эти процессы ограниченным числом аргументов модели, для определения которых требуется минимальный объем экспериментальных данных.

 

<== предыдущая лекция | следующая лекция ==>
Модели процессов приближения объекта к отказам | НАДЕЖНОСТЬ ОБЪЕКТОВ ПРИ ПОСТЕПЕННЫХ ОТКАЗАХ. ОПРЕДЕЛЕНИЕ ВРЕМЕНИ СОХРАНЕНИЯ РАБОТОСПОСОБНОСТИ


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.11 сек.