русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Разработка естественно-языковых интерфейсов и машинный перевод (natural language processing)


Дата добавления: 2013-12-23; просмотров: 2571; Нарушение авторских прав


Программное обеспечение систем ИИ (software engineering for AI)

Представление знаний и разработка систем, основанных на знаниях (knowledge-based systems)

Основные направления исследований в области искусственного интеллекта

Синтезируя десятки определений ИИ из различных источников, в данной книге в качестве рабочего определения можно предложить следующее.

 

Искусственный интеллект - это одно из направлений информатики, целью которого является разработка аппаратно-программных средств, позволяющих пользователю-непрограммисту ставить и решать свои, традиционно считающиеся интеллектуальными задачи, общаясь с ЭВМ на ограниченном подмножестве естественного языка.

Среди множества направлений искусственного интеллекта есть несколько ведущих, которые в настоящее время вызывают наибольший интерес у исследователей и практиков. Опишем их чуть подробнее.

 

Это основное направление в области изучения искусственного интеллекта. Оно связано с разработкой моделей представления знаний, созданием баз знаний, образующих ядро экспертных систем. В последнее время включает в себя модели и методы извлечения и структурирования знаний и сливается с инженерией знаний. Именно исследованиям в этой области посвящена данная книга.

 

В рамках этого направления разрабатываются специальные языки для решения интеллектуальных задач, в которых традиционно упор делается на преобладание логической и символьной обработки над вычислительными процедурами. Эти языки ориентированы на символьную обработку информации - LISP, PROLOG, SMALLTALК, РЕФАЛ и др. Помимо этого создаются пакеты прикладных программ, ориентированные на промышленную разработку интеллектуальных систем, или программные инструментарии искусственного интеллекта, например KEE, ARTS, G2 [Хейес-Рот и др., 1987; Попов, Фоминых, Кисель, Шапот, 1996]. Достаточно популярно также создание так называемых пустых экспертных систем или "оболочек" - KAPPA, EXSYS, M1, ЭКО и др., базы знаний которых можно наполнять конкретными знаниями, создавая различные прикладные системы.



 

Начиная с 50-х годов одной из популярных тем исследований в области ИИ является компьютерная лингвистика, и, в частности, машинный перевод (МП). Идея машинного перевода оказалась совсем не так проста, как казалось первым исследователям и разработчикам.

Уже первая программа в области естественно-языковых (ЕЯ) интерфейсов - пе- реводчик с английского на русский язык - продемонстрировала неэффективность первоначального подхода, основанного на пословном переводе. Однако еще долго разработчики пытались создать программы на основе морфологического анализа. Неплодотворность такого подхода связана с очевидным фактом: человек может перевести текст только на основе понимания его смысла и в контексте предшествующей информации, или контекста. Иначе появляются переводы в стиле "Моя дорогая Маша - my expensive Masha". В дальнейшем системы МП усложнялись и в настоящее время используется несколько более сложных моделей:

 

- применение так называемых "языков-посредников" или языков смысла, в результате происходит дополнительная трансляция "исходный язык оригинала - язык смысла - язык перевода";

- ассоциативный поиск аналогичных фрагментов текста и их переводов в специальных текстовых репозиториях или базах данных;

- структурный подход, включающий последовательный анализ и синтез естественно-языковых сообщений. Традиционно такой подход предполагает наличие нескольких фаз анализа:

1. Морфологический анализ - анализ слов в тексте.

2. Синтаксический анализ - разбор состава предложений и грамматических связей между словами.

3. Семантический анализ - анализ смысла составных частей каждого предложения на основе некоторой предметно-ориентированной базы знаний.

4. Прагматический анализ - анализ смысла предложений в реальном контексте на основе собственной базы знаний.

Синтез ЕЯ -сообщений включает аналогичные этапы, но несколько в другом порядке.

 



<== предыдущая лекция | следующая лекция ==>
История искусственного интеллекта в России | Распознавание образов (pattern recognition)


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.005 сек.