русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

ДИНАМИКА СИСТЕМ. Уравнения движения


Дата добавления: 2014-04-22; просмотров: 1790; Нарушение авторских прав


Математическое описание системы автоматического управления – это описание процессов, протекающих в системе. Построение системы управления начинают с изучения объекта управления и составления его математического описания. В качестве объекта может выступать аппарат, технологический процесс и предприятие. Различие математических моделей объектов связано с их назначением. Модели описывают режимы работы объекта или системы управления и могут быть получены способами: экспериментальным, аналитическим, комбинированным.

При экспериментальном способе уравнения моделей получают путем постановки экспериментов (активный эксперимент) или статистической обработки результатов регистрации переменных объекта в условиях его нормальной эксплуатации (пассивный эксперимент).

При аналитическом описании уравнения моделей получают на основании физико-химических закономерностей протекающих процессов.

При экспериментально-аналитическом подходе уравнения моделей получают аналитическим путем с последующим уточнением параметров этих уравнений экспериментальными методами.

При разработке математического описания систем автоматического управления учитывают методологические положения теории автоматического управления. Это системный подход к решению задач управления; применение методов теории автоматического управления к системам самой разнообразной физической природы; рассмотрение системы как цепи взаимодействующих элементов, передающих сигналы в одном направлении; составление математического описания с рядом упрощений.

Уравнения математической модели объекта или системы управления, устанавливающие взаимосвязь между входными и выходными переменными, называют уравнениями движения. Уравнения, описывающие поведение системы в установившемся режиме при постоянных воздействиях, называются уравнениями статики. Уравнения, описывающие поведение системы в неустановившемся режиме при произвольных входных воздействиях, называются уравнениями динамики.



Объекты регулирования можно разделить на два класса: объекты с сосредоточенными координатами, динамика которых описывается обыкновенными дифференциальными уравнениями, и объекты с распределенными координатами, динамика которых описывается дифференциальными уравнениями в частных производных. В дальнейшем будут рассмотрены только объекты с сосредоточенными координатами.

Например, модель объекта, описываемого дифференциальным уравнением второго порядка, с сосредоточенными координатами

F(y, y', y", x, x') + f = 0, (5.1)

где y – выходная переменная; x, f – входные переменные; y', x' – первые производные по времени; y" – вторая производная по времени.

При постоянных входных воздействиях x = x0; f = f0 с течением времени выходная величина принимает постоянное значение y =y0и уравнение (5.1) преобразуется как F(y0, 0, 0, x0, 0) + f0 = 0, являющемся статическим.

Статической характеристикой объекта называют зависимость выходной величины от входной в статическом режиме. Статическую характеристику можно построить экспериментально, если подавать на вход объекта постоянные воздействия и замерять выходную переменную после окончания переходного процесса. Статическая характеристика характеризуется коэффициентом k = ¶yx. Для объектов с нелинейной статической характеристикой k является переменным (рис. 5.1а), для объектов с линейной статической характеристикой коэффициент постоянен (рис. 5.1б).



<== предыдущая лекция | следующая лекция ==>
Практическая ширина спектра и искажения сигналов | Линейная стационарная система. Принцип суперпозиции


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.