русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Линейные и угловые перемещения в балках при прямом изгибе


Дата добавления: 2014-04-18; просмотров: 2869; Нарушение авторских прав


 

В предыдущей лекции были рассмотрены вопросы, относящиеся к расчету балок на прочность. Однако в большинстве случаев практического расчета деталей, работающих на изгиб, необходимо также производить расчет их на жесткость.

Под расчетом на жесткость понимается оценка упругой податливости балки под действием нагрузок и подбор таких размеров поперечного сечения, при которых перемещения не будут превышать допускаемых величин. Для выполнения таких расчетов необходимо научиться вычислять перемещения попереч- ных сечений балки под действием любой внешней нагрузки. Кроме того, перемещения приходится определять и при расчете статически неопределимых конструкций (балок, рам, арок и т.д.).

В основе теории деформации при изгибе лежит гипотеза плоских сечений. Учитываются деформации только от изгибающего момента, деформациями от поперечной силы пренебрегают как малыми.

С учетом принятых допущений рассмотрим деформацию балки при прямом изгибе. Под действием внешних нагрузок, расположенных в одной из главных плоскостей балки, наблюдается искривление ее оси в той же плоскости, происходит так называемый прямой изгиб. Поперечные сечения при этом поворачиваются и одновременно получают поступательные перемещения (рис. 7.1).

z
x

Рис. 7.1

 

Искривленная ось балки называется упругой линией.

Перемещение центра тяжести сечения по направлению, перпендикулярному к недеформированной оси балки, называется прогибом балки в данном сечении и обозначается z.

Прогибы и углы поворотов в балках являются функциями координаты x и их определение необходимо для расчета жесткости. Рассмотрим изгиб стержня в одной из главных плоскостей, например в плоскости xz. Как показывает практика, в составе реальных сооружений стержни испытывают весьма малые искривления (zmax/l = 10-2 …10-3, где zmax – максимальный прогиб; l – пролет балки).

 



<== предыдущая лекция | следующая лекция ==>
Вопросы для самопроверки | Определение перемещений путем интегрирования уравнения изогнутой оси балки


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.275 сек.