русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Перемещения при плоском изгибе


Дата добавления: 2014-04-18; просмотров: 1649; Нарушение авторских прав


 

При изгибе в качестве перемещений рассматриваются прогиб и угол поворота поперечного сечения. Прогибом балки δ называется величина, на которую перемещается центр тяжести поперечного сечения в направлении, перпендикулярном первоначальной оси балки. Углом поворота поперечного сечения q называется угол, на который поворачивается поперечное сечение при деформации балки (рис. 6.7).

В дальнейшем будем считать, что прогибы и углы поворота балки малы и , а << 1. Приближенное дифференциальное уравнение изогнутой оси балки имеет вид: .

 

l
F
q
d
Рис. 6.7
Если балка имеет один участок, то это уравнение можно непосредственно проинтегрировать:

 

, ,

где – жесткость при изгибе;

С и D – константы интегрирования, которые представляют собой прогиб и угол поворота в начале координат и определяются из граничных условий задачи.

В связи с неравномерным распределением напряжений по сечению балки рациональным можно считать сечение балки, которое при равной с другими сечениями площади имеет наименьшие напряжения.

Максимальные напряжения, возникающие в балке при действии заданной нагрузки, тем меньше

z
z
y
y
h
b
h
b
a
б
Рис. 6.8
чем больше осевой момент сопротивления сечения изгибу.

Поэтому сечения с большим Wу будут более рациональными. Так, например, прямо- угольное сечение, показанное на рис. 6.8 а предпочтительнее использовать при изгибе под действием вертикальной нагрузки, так как осевой момент сопротивления сечения изгибу для него будет больше, чем для этого же сечения, но повернутого на 90о (рис. 6.8 б).

Анализируя эпюры напряжений, можно отметить, что на продольной линии нормальные напряжения равны нулю, касательные напряжения достигают максимума, в крайних волокнах, наиболее удаленных от продольной линии, наоборот, нормальные напряжения достигают наибольших по модулю значений, а касательные напряжения равны нулю. Расчетная практика показала, что нормальные напряжения, как правило, в несколько раз больше касательных. Поэтому имеет смысл проектировать сечения так, чтобы в зоне действия больших напряжений находилась бы большая часть материала. Этому требованию отвечают сечения в виде двутавровых и швеллеровых прокатных профилей, а также различные коробчатые и кольцевые сечения (рис. 6.9).



 

Рис. 6.9

 

 

 




<== предыдущая лекция | следующая лекция ==>
Напряжения при поперечном изгибе | Вопросы для самопроверки


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.294 сек.