русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Количество информации как мера снятой неопределенности


Дата добавления: 2013-12-23; просмотров: 1431; Нарушение авторских прав


Количество информации

Подведем итог

Связав понятие неопределенности дискретной величины с распределением вероятности по возможным состояниям и потребовав некоторых естественных свойств от количественной меры неопределенности, мы приходим к выводу, что такой мерой может служить только функционал (1), названный энтропией. С некоторыми трудностями энтропийный подход удалось обобщить на непрерывные случайные величины (введением дифференциальной энтропии) и на дискретные случайные процессы.

В основе всей теории информации лежит открытие, что «информация допускает количественную оценку». В простейшей форме эта идея была выдвинута еще в 1928г. Хартли, но завершенный и общий вид придал ее Шэннон в 1948г. Не останавливаясь на том, как развивалось и обобщалось понятие количества информации, дадим сразу ее современное толкование.

Процесс получения информации можно интерпретировать как «изменение неопределенности в результате приема сигнала». Проиллюстрируем эту идею на примере достаточно простого случая, когда передача сигнала происходит при следующих условиях:

1. полезный (передаваемый) сигнал является последовательностью статистически независимых символов с вероятностями p(xi),i = 1,m ;

2. принимаемый сигнал является последовательностью символов Yk того же алфавита;

3. если шумы (искажения) отсутствуют, то принимаемый сигнал совпадает с отправленным Yk=Xk ;

4. если шум имеется, то его действие приводит к тому, что данный символ либо остается прежним (i-м), либо подменен любым другим (k-м) с вероятностью p(yk/xi) ;

5. искажение данного символа является событием статистически независимым от того, что произошло с предыдущим символом.

Итак, до получения очередного символа ситуация характеризуется неопределенностью того, какой символ будет отправлен, т.е. априорной энтропией Н(Х). После получения символа yk неопределенность относительно того, какой символ был отправлен, меняется: в случае отсутствия шума она вообще исчезает (апостериорная энтропия равна нулю, поскольку точно известно, что был передан символ yk=xi), а при наличии шума мы не можем быть уверены, что принятый символ и есть переданный, т.е. возникает неопределенность, характеризуемая апостериорной энтропией



H(X/yk)=H({p(xi/yk)})>0.

В среднем после получения очередного символа энтропия H(X/Y)=My{H(X/Yk)}

Определим теперь количество информации как меру снятой неопределенности: числовое значение количества информации о некотором объекте равно разности априорной и апостериорной энтропии этого объекта, т.е. I(X,Y) = H(X)-H(X/Y). (1)

Используя свойство 2 энтропии, легко получить, что I(X,Y) = H(Y) — H(Y/X) (2)

В явной форме равенство (1) запишется так:

I(X,Y) = H(X)-H(X/Y) = -∑p(xi)⋅(p(xi))+∑p(yk)⋅∑p(xi/yk)⋅log(p(xi/yk)) =
=-∑∑p(xi,yk)⋅log(p(xi))+∑∑p(xi,yk)⋅log(p(xi/yk)) =
= ∑∑p(xi,yk)⋅log{p(xi,yk)/p(xi)} (3)

а для равенства (2) имеем:

I(X,Y) = ∑∑p(xi,yk)⋅log{p(yk/xi)/p(yk)} (4)



<== предыдущая лекция | следующая лекция ==>
Фундаментальное свойство энтропии случайного процесса | Свойства количества информации


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.006 сек.