русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Рентгеноструктурный анализ рассогласования параметров решетки двух эпитаксиальных слоев


Дата добавления: 2014-03-24; просмотров: 743; Нарушение авторских прав


Рентгеноструктурный анализ позволяет определить рассогласование параметров решетки эпитаксиального слоя и подложки, на которой произведен рост полупроводникового материала.

 

Рис. 43 Дислокации несоответствия возникающие в результате несоответствия параметров решетки а и а0.

Для этого применяется рентгеновский диффрактометр. Этот прибор позволяет направить на полупроводниковый слой коллимированный пучек рентгеновских лучей под некоторым углом. После проникновения в полупроводник луч отражается от кристаллической решетки. Согласно условию Вульфа-Брегга рентгеновские лучи под некоторым углом отражаются в фазе (синфазны), что обеспечивает условие рентгеновской дифракции и возрастания интенсивности отраженного рентгеновского излучения:

2a sinΘ = mλ (37)

Где m – порядок рентгеновской дифракции, λ – длина волны рентгеновского излучения.

 

Рис. 44. Схематическое изображение падения рентгеновского излучения на кристалл(а) и рентгеновского дифрактометра(б).

Углы при которых наблюдается рентгеновская дифракция называются брегговскими углами. По ним определяется межплоскостное расстояние в кристалле и его совершенство. В нашем случае, когда на кристаллической подложке есть тонкий эпитаксиальный слой, можно одновременно наблюдать рентгеновскую дифракцию от кристалла и эпитаксиального слоя. По разнице положения максимумов отражения подложки и слоя можно определить рассогласование параметров решетки.

 

Рис. 45 Зависимость интенсивности отраженного рентгеновского излучения подложки и слоя.


Лекция № 5. Принцип действия полупроводникового лазера. Лазерный эффект в полупроводниках.

5.1. Первое условие: создание инверсной заселенности в активной среде.

Рассматриваем:

· Спонтанное излучение

· Стимулированное (вынужденное усиление)



· Поглощение оптического излучения полупроводником.

Усилитель излучения возможен при избытке излучательных переходов в активной среде. → Избыток излучательных переходов возможен при избытке носителей заряда в зоне проводимости. →Условие избытка носителей заряда в зоне проводимости:

qB (fc (1-fv) – fv (1-fc) ) > 0 (38)

q – заряд, В – константа излучательной рекомбинации, fc – вероятность заселенности энергетического уровня с, fv – вероятность заселенности уровня v.

Если fc > f v, то условие инверсной заселенности достигнуто и для полупроводникового материала это условие принимает вид:

Fc – Fv > Ec - Ev > Eg (39)

F c – уровень ферми в зоне проводимости для электронов, Fv – уровень ферми в зоне валентной для дырок, E c – энергетический уровень дна зоны проводимости, E v – энергетический уровень потолка валентной зоны, Eg – ширина запрещенной зоны.

Концентрация инжектированных носителей заряда должна обеспечивать проникновение уровня Ферми в зону проводимости и валентную зону полупроводникового материала (выполнение условия вырождения полупроводникового материала).

 

Рис. 46. Примеры выполнения условия создания инверсной заселенности в полупроводниковом материале.

5.2.Второе условие: создание волновода в активной среде полупроводникового лазера.

В гомолазере за счет температурного градиента и градиента концентрации носителей заряда вдоль n-р перехода.

В гетеролазере за счет скачка показателя преломления полупроводниковых материалов широкозонного и узкозонного.

Волновод обеспечивает направленное распространение фотонов спонтанного излучения в активной среде, а после выполнения пороговых условий удерживает моды стимулированного (вынужденного) излучения.

5.3. Третье условие: Обратная связь для создания усилителя в активной среде. Резонатор Фабри-Перо. Образуется скалыванием полупроводникового кристалла по плоскости спаенности кристаллической решетки. На сколах кристалла (гранях резонатора Фабр-Перо) образуются зеркала R1 и R2 – коэффициент отражения зеркал резонатора.

5.4. Четвертое условие: Усиление (g) должно скомпенсировать все оптические потери внутренние и внешние:

g= αi+ 1/2L lg 1/ R1 R2 (40)

αi – внутренние оптические потери, L – длина резонатора Фабри – Перо, R1 и R2 – коэффициент отражения зеркал резонатора Фабри Перо.

 

Рис. 47 Иллюстрирует поглощение излучения (фотона) распространяющегося в полупроводнике(а); иллюстрирует излучательную рекомбинацию (б). В обоих случаях hν ≈ > Eg

 

 

 

Рис.48. Иллюстрирует спонтанное излучение (а) и возникновение когерентного фотона, стимулированного фотона , вынужденного фотона(б).

· В первую очередь должны быть скомпенсированы потери на поглощение в самом полупроводниковом материале и наступило просветление полупроводникового материала. Которое характеризуется отсутствием возможности поглощения фотонов при распространении по волноводу активной среды.

 

Рис.49. иллюстрирует эту ситуацию стимулированные фотоны просветлили материал поглощаясь в нем, но их настолько много, что они могут распространяться дальше без поглощения, что приводит к усилению-рождению стимулированных фотонов.

· Во вторую очередь должны быть скомпенсированы все внутренние оптические потери αi потери на рассеяние на неоднородностях материала (кристаллических), на неоднородностях гетерограниц полупроводниковых слоев и на свободных носителях заряда.

αi = αi кристалла + αi границ + αi свободные носители заряда (41)



<== предыдущая лекция | следующая лекция ==>
Технологии эпитаксиального выращивания полупроводниковых материалов. | Гетеропереход.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Полезен материал? Поделись:

Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.002 сек.