русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Метод градиентного спуска.


Дата добавления: 2014-03-21; просмотров: 4307; Нарушение авторских прав


В природе мы нередко наблюдаем явления, сходные с решением задачи на на­хождение минимума. К ним относится, в частности, стекание воды с берега котлована на дно. Упростим ситуацию, считая, что берега котлована «унимодальны» т.е. они гладкие и не содержат локальных углублений или выступов. Тогда вода устремится вниз в направлении наибольшей крутизны берега в каждой точке.

Переходя на математический язык, заключаем, что направление наискорейшего пуска соответствует направлению наибольшего убывания функции. Из курса мате­матики известно, что направление наибольшего возраста­ния функции двух переменных характеризуется ее градиентом

,

где - единичные векторы (орты) в направлении ко­ординатных осей. Следовательно, направление, противо­положное градиентному, укажет путь, ведущий вниз вдоль наиболее крутой линии. Методы, основанные на выборе пути оптимизации с помощью градиента, называют­ся градиентными.

Идея метода градиентного спуска состоит в следующем. Выбираем некоторую начальную точку и вычисляем в ней градиент рассматриваемой функции. Делаем шаг в направлении, обратном градиентному. В результате приходим в точку, значение функции в которой обычно меньше первоначального. Если это условие не выполне­но, т.е. значение функции не изменилось либо даже воз­росло, то нужно уменьшить шаг. В новой точке процеду­ру повторяем: вычисляем градиент и снова делаем шаг в обратном к нему направлении. Процесс продолжается до получения наименьшего значения целевой функции. Мо­мент окончания поиска наступит тогда, когда движение из полученной точки с любым шагом приводит к возрастанию значения целевой функции. Строго говоря, если минимум функции достигается внутри рассматриваемой области, то в этой точке градиент равен нулю, что также может служить сигналом об окончании процесса оптимизации.



В описанном методе требуется вычислять на каждом шаге оптимизации градиент целевой функции :

.

Формулы для частных производных можно получить в явном виде лишь в том случае, когда целевая функция задана аналитически. В противном случае эти производ­ные вычисляются с помощью численного дифференцирования:

При использовании градиентного спуска в задачах оптимизации основной объем вычислений приходится обычно на вычисление градиента целевой функции в каж­дой точке траектории спуска. Поэтому целесообразно уменьшить количество таких точек без ущерба для само­го решения. Это достигается в некоторых методах, явля­ющихся модификациями градиентного спуска. Одним из них является метод наискорейшего спуска. Согласно это­му методу, после определения в начальной точке направ­ления, противоположного градиенту целевой функции, в этом направлении делают не один шаг, а двигаются до тех пор, пока целевая функция убывает, достигая, таким образом, минимума в некоторой точке. В этой точке снова определяют направление спуска (с помощью градиента) и ищут новую точку минимума целевой функции и т. д. В этом методе спуск происходит гораздо более крупными шагами и градиент функции вычисляется в меньшем числе точек.

Заметим, что метод наискорейшего спуска сводит мно­гомерную задачу оптимизации к последовательности одно­мерных задач на каждом шаге оптимизации, как и в слу­чае покоординатного спуска. Разница состоит в. том, что здесь направление одномерной оптимизации определяется градиентом целевой функции, тогда как покоординатный спуск проводится на каждом шаге вдоль одного из коор­динатных направлений.

 



<== предыдущая лекция | следующая лекция ==>
Многомерные задачи оптимизации. | Задачи с ограничениями.


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.004 сек.