русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Ассоциативная память


Дата добавления: 2014-02-04; просмотров: 1361; Нарушение авторских прав


Адресная память

Адресная, ассоциативная и стековая организация памяти

 

ЗУ с произвольным обращением обычно содержит множество одинаковых запоминающих элементов, образующих запоминающий массив (ЗМ). ЗМ разделен на отдельные ячейки, число разрядов в которых равно ширине выборки памяти. Способ организации памяти зависит от метода размещения и поиска информации в ЗУ. По этому признаку различают адресную, ассоциативную и стековую память.

В такой памяти размещение и поиск информации в ЗУ основаны на использовании адреса байта или слова. Адресом служит порядковый номер ячейки ЗМ, в которой это слово размещается. Структурная схема адресной памяти объемом N n-разрядных слов имеет следующий вид


При каждом обращении к ЗУ необходимо указывать номер (адрес) ячейки памяти, в которой размещается нужная информация. Для приема адреса А служит регистр адреса RGA. Этот адрес дешифруется дешифратором адреса DC, который формирует сигнал на одном из своих выходов. При этом номер этого выхода равен самому адресу А. Таким образом, дешифратор DC указывает номер ячейки памяти, к которой происходит обращение. При чтении информации из ЗУ устройство управления формирует управляющий сигнал «чтение», под действием которого прочитанное из ЗУ слово поступает в усилители чтения, а оттуда в регистр информации RGI.

Занесение прочитанного слова в RGI происходит под действием управляющего сигнала “Прием информации из ЗМ”. Аналогично происходит запись информации в ЗМ. При этом записываемое слово поступает с ШD в регистр RGI, а оттуда через усилитель записи под действием сигнала «запись» в выбранную ячейку ЗМ. Любой цикл обращения к памяти инициируется поступлением сигнала «обращение». На УУ поступают также сигналы «чтение» и «запись», которые указывают вид выполняемой в ЗУ операции (запись или чтение).



Для построения адресной памяти используются микросхемы памяти, в состав которых кроме ЗМ входят также усилители чтения и записи, а также дешифратор памяти.

 

В памяти этого типа поиск нужной информации производится не по адресу, а по содержанию самой информации (т.е. по ассоциативному признаку). При этом поиск по ассоциативному признаку происходит параллельно во времени для всех ячеек памяти. Ассоциативный поиск позволяет существенно упростить и ускорить обработку данных. Это достигается за счет того, что в такой памяти операция чтения информации совмещена с выполнением ряда логических операций. Например, можно выполнять такие операции, как:

1) поиск максимального или минимального числа в ЗУ;

2) поиск слов, заключенных в определенные границы;

3) поиск слов, ближайших к ассоциативному признаку, как с большей, так и с меньшей стороны и т.д.

Простейшая ассоциативная память обычно выполняет единственную операцию по выборке слов, чей признак совпадает с ассоциативным признаком.

 


ЗМ содержит N ячеек, каждая ячейка n+1 разрядная. Для указания занятости ячейки используется служебный n-ый разряд. Если в n-ом разряде 0 – то ячейка свободна, если 1 – то занята.

По входной ШD в регистр ассоциативного признака RGП поступает n-разрядный признак, а в регистр маски RGМ – код маски поиска. При этом n-ый разряд регистра RGМ устанавливается в 0. Ассоциативный поиск производится лишь по тем разрядам признака, которым соответствует «1» в регистре маски, то есть по так называемым незамаскированным разрядам RGМ. Таким образом, задавая код маски М, можно произвольно выбирать те разряды признака, по которым ведется поиск.

Для слов из ЗМ, в которых все цифры совпали с незамаскированными разрядами RGП, комбинированная схема КС 1 устанавливает «1» в соответствующие разряды регистра совпадения RGC. Таким образом, если произошло совпадение цифры j-го слова с незамаскируемыми разрядами признака, то в j-ом разряде регистра RGC будет записана «1», в противном случае «0». Запись «1» в j-ом разряде RGC означает, что j-ое слово соответствует признаку, т.е. является тем словом, которое собственно и ищется в ЗМ. КС 1 реализует следующую систему М булевых уравнений:

n-1 _________________

RGC(j) = /\ [RGП(i)~ЗМ(j,i) V RGM(i)] j = 0,N-1

i=0

~ - операция равнозначности;

/\- знак конъюнкции.

RGП(i)~ЗМ(j,i) = 1, если i-ые разряды слов совпадают.

Выходы регистра RGC соединены со входами КС2, которая формирует выходы α0, α1, α2. Символ α0=1, если во всех разрядах RGC находятся «Æ», что соответствует случаю отсутствия искомых слов в ЗМ.

Символ α1=1, если имеется одно слово в ЗМ, удовлетворяющее ассоциативному поиску. Символ α2=1, если таких слов больше одного. При α1=1 найденное слово из ЗМ записывается в RGI, а оттуда в выходную шину ШД. При α2=1 обычно читается слово из ячейки, имеющей наименьший номер среди ячеек, отмеченных «1»-цей в RGC.

При записи информации сначала находится свободная ячейка. Для этого выполняется операция ассоциативного поиска по признаку, имеющему во всех разрядах «0», а в регистре маски «0» записаны во всех разрядах, кроме младшего n-го разряда.

Таким образом, определяются те ячейки ЗМ, у которых в n-ом разряде записан «0», что означает незанятость ячейки. В свободную ячейку с наименьшим номером записывается слово из регистра информации RGI

 



<== предыдущая лекция | следующая лекция ==>
Принципы построения устройств памяти | Логическая структура процессора


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.04 сек.