русс | укр

Языки программирования

ПаскальСиАссемблерJavaMatlabPhpHtmlJavaScriptCSSC#DelphiТурбо Пролог

Компьютерные сетиСистемное программное обеспечениеИнформационные технологииПрограммирование

Все о программировании


Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации

Анализ общего риска: активы, рассматриваемые изолированно


Дата добавления: 2013-12-24; просмотров: 1254; Нарушение авторских прав


Понятия распределения вероятностей и ожидаемой величины могут исполь­зоваться как основа для измерения риска. Известно, что риск присутствует в том случае, если исследуемые распределения имеют более одного возможного ис­хода, однако каким образом можно измерить риск и оценить его количественно? Чтобы ответить на этот вопрос, рассмотрим сначала методику исчисления об­щего риска.

Выше мы предположили, что возможны 5 состояний экономики (см. табл. 3.1). На самом же деле состояние экономики может варьироваться от самой глубокой депрессии до наивысше­го подъема с бесчисленным количеством промежуточных поло­жений. Обычно среднему (нормальному) состоянию соответству­ет самая большая вероятность, далее значения вероятностей рав­номерно уменьшаются при удалении от нормы как в одну (подъ­ем), так и в другую (спад) сторону, стремясь к нулю в крайних по­ложениях (полная депрессия и наибольший подъем). Если при этом величина доходности, соответствующая нормальному поло­жению, является одновременно и средним арифметическим двух крайних значений, то мы получаем распределение, которое в тео­рии вероятностей носит название «нормального». Его графическое изображение дано на рис. 3.2.

Нормальное распределение достаточно полно отражает реаль­ную ситуацию и дает возможность, используя ограниченную ин­формацию, получать числовые характеристики, необходимые для оценки степени риска того или иного проекта. Далее будем всегда предполагать, что мы находимся в условиях нормального распре­деления вероятностей.

Замечание.В действительности в чистом виде нормальное распределение в экономических явлениях встречается редко, однако, если однородность совокупности соблюдена, часто фактические распределения близки к нормальному.

 

Вопрос 2.Реальные распределения вероятностей могут существенно отличаться от нормального. Насколько сильно будут искажены наши выводы, если в наших рассуждениях мы будем исходить только из нормального закона распределения вероятностей?



Ответ: а) затрудняюсь ответить; б) существенно искажены; в) искажения будут несущественными.

Правильный ответ в).

При любом варианте ответа см. справку 2.

 

Справка 2. Даже если распределение не является близким к нормальному, на основании тео­ремы Чебышева можно утверждать, что для любого распределения не менее 89% всех исходов лежит в пределах трех средних квадратических отклонений от ожидаемого значения.

 


 

ERR

Рис. 3.2. Нормальное распределение вероятностей

 

На рисунке 3.1 приведены графики распределения вероятностей для проектов 1 и 2. Условиям нормального распределения удовлетворяет проект 2.

Для большей прозрачности дальнейших рассуждений, полезно предварительно решить самостоятельно следующую задачу

 

Задача 1. Рассмотрим два финансовых проекта А и В, для кото­рых возможные нормы доходности (IRR ) находятся в зависимо­сти от будущего состояния экономики. Данная зависимость отра­жена в таблице 3.2

Таблица 3.2.

Данные для расчета ожидаемой нормы доходности вариантов вложения капитала в проекты А и В

Состояние экономики Вероятность данного состояния Проект А, IRR Проект В, IRR
Подъем Норма Спад P1 = 0,25 Р2 = 0,5 Р3 = 0,25 90% 20% - 50% 25% 20% 15%

Рассчитайте для каждого из проектов ожидае­мую норму доходности ERR.Сравните результаты своих вычислений с ответом.

Ответ: Для проекта А по формуле (3.1) получаем:

ERRА = 0,25 ´ 90% + 0,5 ´ 20% + 0,25 ´ (-50%) = 20%.

Для проекта В:

ERRВ = 0,25 ´ 25% + 0,5 ´ 20% + 0,25 ´ 15% = 20%

 

Таким образом, для двух рассматриваемых проектов ожидае­мые нормы доходности совпадают, несмотря на то, что диапазон возможных значений IRR сильно различается: у проекта А от -50% до 90%, у проекта В от 15% до 25%. На рисунке 3.3 приведены графики распределения вероятностей для проектов А и В, (они удовлетворяют условиям нормального распределения).

Рис. 3.3. Распределение вероятностей для проектов А и В

Предполагается, что для проекта А в наихудшем случае убыток не составит более 50%, а в наилучшем случае доход не превысит 90%. Для проекта В 15% и 25% соответственно. Очевидно, что тогда значение ERR останется прежним (20%) для обоих проектов, совпадая со значением среднего состояния. Со­ответствующая же среднему значению вероятность понизится, причем не одинаково в наших двух случаях.

 
 
р


ERR

 

 

Рис. 3.4. Распределение вероятностей для проектов А и В

Очевидно, чем более «сжат» график, тем выше вероятность, со­ответствующая среднему ожидаемому доходу (ERR), и вероят­ность того, что величина реальной доходности окажется доста­точно близкой к ERR. Тем ниже будет и риск, связанный с соот­ветствующим проектом. Поэтому меру «сжатости» графика мож­но принять за достаточно корректную меру риска.

Меру «сжатости» определяет величина, которая в теории веро­ятности носит название«среднеквадратичного отклонения» - s - и рассчитывается по следующей формуле

(3.2)

Чем меньше величина s, тем больше «сжато» соответствующее распределение вероятностей, и тем менее рискован проект. При этом для нормального распределения вероятность «попадания» в пределы ERR ± s составляет 68,26%.

Рассчитаем значение s для рассматриваемых проектов А и В.

Проект А:

%

Проект В:

%

Как видим, для второго проекта с вероятностью 68,26% можно ожидать величину доходности IRR = 20% ± 3,5%, т.е. от 16,5% до 23,5%. Риск здесь минимальный. Проект А гораздо более риско­ванный. С вероятностью 68,26% можно получить доходность от -29,5% до 69,5%. Считается, что среднерискованной операции соответствует значение s около 30%.

В рассмотренном примере распределение вероятностей пред­полагалось известным заранее. Во многих ситуациях бывают дос­тупны лишь данные о том, какой доход приносила некая финан­совая или хозяйственная операция в предыдущие годы.

С позиции развиваемых представлений проанализируем рассмотренный в самом начале темы пример 1.

Рассчитаем, например, дисперсию доходности проекта 2 по данным табл. 3.1. Нам известно, что ожидаемая доходность проекта, равна 12.0%. Следовательно, дисперсия равна

= (-2,0 – 12,0)20,05 + (9,0 – 12,0)20,20 + (12,0-12,0)20,50 +

+(15,0-12,0)20,20 + (26,0-12,0)20,05 = 23,20,

а среднее квадратическое отклонение доходности проекта 2 – s =4,82%

Используя этот показатель в качестве меры разброса, можно сделать ряд полез­ных выводов о распределении исходов. В частности, если распределение явля­ется непрерывным и близким к нормальному, можно утверждать, что 68.3% всех исходов лежит в пределах одного среднего квадратического отклонения от ожидаемого значения, 95.4% — в пределах двух средних квадратических отклонений и практически все исходы (99.7%) — в пределах трех средних ква­дратических отклонений.

В табл. 3.3 приводятся ожидаемые значения доходности, дисперсия и сред­нее квадратическое отклонение по всем четырем альтернативным вариантам ин­вестирования примера 1, а также коэффициент вариации, который мы рассмотрим в сле­дующем разделе. Мы видим, что ГКО-ОФЗ обладают наименьшими значениями показателей дисперсии и среднего квадратического отклонения, а проекту 2 соответствуют наибольшие их значения.

По данным табл. 3.3 можно, казалось бы, прийти к заключению, что казна­чейские векселя — наименее рисковый вариант инвестирования, а проект 2 — наиболее рисковый. Однако это не всегда верно; перед тем как сделать оконча­тельный вывод, необходимо принять во внимание ряд других факторов, таких как численные значения ожидаемой доходности, асимметрия распределения, до­стоверность наших оценок распределения вероятностей и взаимосвязь каждого актива с другими активами, включенными в портфель инвестиций.

 



<== предыдущая лекция | следующая лекция ==>
Комбинации ожидаемого значения и дисперсии как критерий риска | Коэффициент вариации


Карта сайта Карта сайта укр


Уроки php mysql Программирование

Онлайн система счисления Калькулятор онлайн обычный Инженерный калькулятор онлайн Замена русских букв на английские для вебмастеров Замена русских букв на английские

Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных


 


Не нашли то, что искали? Google вам в помощь!

 
 

© life-prog.ru При использовании материалов прямая ссылка на сайт обязательна.

Генерация страницы за: 0.007 сек.