Пусть эксперт определяет толщину изделия, с помощью понятия "маленькая толщина", "средняя толщина" и "большая толщина", при этом минимальная толщина равняется 10 мм, а максимальная - 80 мм.
Формализация этого описания может быть проведена с помощью лингвистической переменной <b, T, X, G, M>, где
b - толщина изделия;
T - {"маленькая толщина", "средняя толщина", "большая толщина"};
X - [10, 80];
G - процедура образования новых термов с помощью связок "и", "или" и модификаторов типа "очень", "не", "слегка" и др. Например, "маленькая или средняя толщина", "очень маленькая толщина" и др.;
М - процедура задания на X = [10, 80] нечетких подмножеств А1="маленькая толщина", А2 = "средняя толщина", А3="большая толщина", а также нечетких множеств для термов из G(T) соответственно правилам трансляции нечетких связок и модификаторов "и", "или", "не", "очень", "слегка", операции над нечеткими множествами вида: А З C, АИ C, , CON А = А2 , DIL А = А0,5 і ін.
Вместе с рассмотренными выше базовыми значениями лингвистической переменной "толщина" (Т={"маленькая толщина", "средняя толщина", "большая толщина"}) существуют значения, зависящие от области определения Х. В данном случае значения лингвистической переменной "толщина изделия" могут быть определены как "около 20 мм", "около 50 мм", "около 70 мм", то есть в виде нечетких чисел.
нечеткое множество "маленькая или средняя толщина" = А1ИА1.
Коротко перечислим преимущества fuzzy-систем по сравнению с другими:
возможность оперировать нечеткими входными данными: например, непрерывно изменяющиеся во времени значения (динамические задачи), значения, которые невозможно задать однозначно (результаты статистических опросов, рекламные компании и т.д.);
возможность нечеткой формализации критериев оценки и сравнения: оперирование критериями "большинство", "возможно", преимущественно" и т.д.;
возможность проведения качественных оценок как входных данных, так и выходных результатов: вы оперируете не только значениями данных, но и их степенью достоверности (не путать с вероятностью!) и ее распределением;
возможность проведения быстрого моделирования сложных динамических систем и их сравнительный анализ с заданной степенью точности: оперируя принципами поведения системы, описанными fuzzy-методами, вы во-первых, не тратите много времени на выяснение точных значений переменных и составление описывающих уравнений, во-вторых, можете оценить разные варианты выходных значений.